
UNCLASSIFIED

AD NUMBER

AD027933

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies and their contractors;
Administrative/Operational Use; DEC 1953.
Other requests shall be referred to Wright
Air Development Center, Attn: ARDC,
Wright-Patterson AFB, OH 45433.

AUTHORITY

AFAL ltr, 17 Aug 1979

THIS PAGE IS UNCLASSIFIED



i-F~i-

WADC IECHNICAL REPORT 54+9
r,J :

THE POWER OF STATISTICAL TESTS

B. S. KEEPING

UNIVERSITY OF ALBERTA

DECEMBER 1953

Statement A
Approved for Public Release

WRIGHT AIR DEVELOPMENT CENTER

cQ o'13 13



NOTICE

When Government drawings, specifications, or other data areused
for any purpose other than in connection with a definitely related Govern-
ment procurement operation, the United States Government thereby in-
curs no responsibility nor any obligation whatsoever; and the fact that
the Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data, is not to be regarded
by implication or otherwise as in any manner licensing the holder or
any other person or corporation, or conveying any rights or permission
to manufacture, use, or sell anypatented invention that may in any way
be related thereto.



WADC TECHNICAL REPORT 54-9

THE POWER OF STATISTICAL TESTS

E. S. Keeping

University of Alberta

December 1953

Aeronautical Research Laboratory
Contract No. AF13(616).321

RDO No. 475.415

Wright Air Development Center
Air Research and Development Command

United States Air Force
Wright-Patterson Air Force Base, Ohio

Carpenter Litho & Prtg. Co., Springffielt, 0.
500 - 16 November 1954



FOREWORD

This report vas prepared by Professor E.g. Keeping at the
University of Alberta, Canada, on Contract No. AF33(616)-321 with
the United States Air Force.

The work was done under Research and Development Order No.
R475-415, and was initiated by Dr. Paul R. Rider, Chief Statistician,
Aeronautical Research Laboratory, Wright-Patterson Air Force Base,
Ohio.

WADC TR 54-9



ABSTRACT

The concept of power for statistical tests of hypotheses,
and various ideas connected with it, are described and illustrated.
The power is given for a number of the common statistical tests, and
tables are supplied which facilitate decisions on the sample sizes
necessary for detecting differences between means, variances,
proportions defective, etc. with prescribed power.
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PRELIMINARY IDEAS AND DEFINITIONS.

1.1 Statistical Estimation.

In many practical problems we examine a sample in
order to be able to say something about the population from
which the sample was taken. For instance, we may want to
find out whether the mean breaking strength of a large con-
signment of steel rods is greater than a specified value, or
whether a machine is turning out an unduly large proportion
of pistons with diameters outside the specified tolerance
limits. From a sample, and especially from a small sample,
we cannot expect to get exact information about the population.
All that we can hope to do is to determine the probability that
a statement which we make about the population is true. Nat-
urally we want this probability, other things being equal, to
be as large as possible.

The types of problems which we can investigate statis-
tically by sampling, fall into two main classes: problems of
estimation and problems of the testing of hypotheses. In prob-
lems of estimation we are concerned with the numerical value
of some characteristic of the population such as the mean
breaking strength (for a population of rods), and we form the
best estimate we can of this quantity from measurements on
a random sample. The size of the sample and the particular
statistic (a function of the measurements) which we use for
estimation are more or less within our control. As regards
size, the larger the sample, of course, the more accurate the
estimate, but questions of time and expense often seriously
restrict the size of a practicable sample, and in routine work
samples as small as four or five are quite common. The
statistic, or estimator as it is sometimes called, should poss-
ess certain desirable properties; and in particular should be
consistent, unbiased and as efficient as possible. It is said to
be consistent if its value tends, as the sample size increases
indefinitely, to the true value of the characteristic which is
being estimated. It is unbiased if its expected value (that is,
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the arithmetic mean of its values for a very large number of
similar random samples, all of the same size) is equal to the
true value. The efficiency is measured by the variance of the
values of the statistic for random samples of the same size;
the less this variance the more efficient the statistic, since
the standard deviation (the square root of the variance) is a
measure of the order of magnitude of the error which may be
expected when the unknown population value is estimated from
the known sample statistic.

If several statistics are available for estimating the
same population characteristic, we shall naturally choose the
most efficient one, unless it is so much more troublesome or
time-consuming to caiculate that the gain in efficiency is more
than offset by the less in speed. Both the arithmetic mean and
the median of a sample from a normal population are consistent
and unbiased statistics for estimating the mean of the population,
but the arithmetic mean is more efficient than the median. The
latter, on the other hand, is somewhat easier to calculate. A-
gain, the variance s2 of a sample of size N from a normal
population is, when multiplied by N/(N - 1), an unbiased est-
imate of the population variance ( . Anether elStimate is
provided by the rang of the sample (the difference between
the greatest and the least values in the sample), the estimated
variance being equal to the square of the range multiplied by a
factor which depends on the sample size and which is obtaini..
able from tables for sizes up to 20. For small sample sizes
the range is nearly as efficient as the sample variance and is
much easier to calculate.

1.2 Confidence Intervals.

When estimating a characteristic of the population from
a sample statistic it is very desirable to know how much trust
we can place in the estimate. For many practieally important
kinds of estimate it is possible to calculate a confidence inter-
val, within which, with a certain degree of confidence, we can
claim that the true value will lie. If, on the basis of a sample,
we calculate upper and lower 9516 confidence limits a and b,
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for the estimation of a parameter 0, we imply that the probability
of the truth of the statement b< e < a is 0. 95. This probability
is to be interpreted as referring to the relative frequency of
correct statements among a very large number of such confidence
statements, each made on the basis of a separate random sample
of the same size. Each sample will give rise to its own con-
fidence interval, which may or may not actually include the true
value, but it will do so in 95% of the samples. We therefore stand
only a 5% chance of being wrong in making the statement on the
basis of a single sample.

1.3 Tests of Hypotheses.

Instead of trying to estimate the precise value of some

population characteristic or parameter 8, we may be more
interested in whether or not it exceeds or falls below a certain
specified level, or whether it lies between definitely specified
limits. We may, for example, want to know whether the mean
breaking strength of a certain type of thread is at least 100 lb.
wt., or whether in a large lot of machined parts at least 98%
will have diameters within, say, 5 thousandths of an inch of a
given value. In such cases we use random samples to test a
certain hypothesis, generally called the null hypothesis, Ho.
For the example of the thread, the null hypothesis might be that
that true mean breaking strength /4. 1 100 lb. wt. The altern-
ative hMthesis H 1 might then be that 1 < 100 lb. wt., and
we try to decide between these two hypotheses by making
measurements on one or more samples. In discussing a stat-
istical test it is well to be quite clear at the outset about the
nature of the null hypothesis and of the alternative hypothesis.

On the basis of the sample measurements we have three
possible courses of action. We can (1) reject the null hypo-
thesis, (2) accept it, or (3) hedge, and say that the results
are indecisive and that further samples should be taken. If,
for any reason, we are limited to one sample of a fixed size,
we are bound to adopt one of the first two courses. In two-
sample tests, and sequential tests, further sampling is possible,
but most of the classical statistical tests are based on the fixed-
sample concept, and it is with this procedure that we shall be
mainly concerned.
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1.4 Errors of the First and Second Kind.

If we are limited to acceptance or rejection of the null
hypothesis we can obviously go wrong in two ways, either by re-
jecting the null hypothesis when it is really true ( this is called
an error of the first kind ) or by accepting the null hypothesis
when the alternative hypothesis is true ( this is called an error
of the second kind). It is in practice always possible to devise
the test so that the probability of an error of the first kind is
definitely less than some fixed value less than 1 (it may be, for
instance, less than 0. 05 ). At the same time, we should like the
probability of an error of the second kind to be as small as poss -
ible, and we try to devise the test accordingly. One test is said
to be more powerful than another of the same size if it gives a
greater probability of rejecting the null hypothesis when it is
false, or, what comes to the same thing, a smaller probability
of making an error of the second kind.

1.5 Assumption of Normality.

A test usually consists in calculating a certain statistic
T from the observed sample values and observing whether or not
T lies in a pre -determined region of values which is called the
region of rejection. If it does lie in this region the null hypo-
thesis is rejected. The region of rejection is determined from
the unknown distribution of T when the null hypothesis is true,
and for most tests in common use it is necessary, in order to
specify the region of rejection, to assume that the measured
variable is normally distributed in the parent population. There
are some tests which do not require this or any other assumption
about the population distribution and which are therefore known
as distribution-free tests. Also, some work has been done on
sampling from a rectangular population and from a skew dis-
tribution known as Pearson's Type 111, but for the most part
the assumption of a normal population is regularly made. From
a good deal of experimental evidence it appears that a moderate
degree of departure from normality will not seriously affect the
ordinary tests. If the departure is marked, it is often possible
by transforming the variable ( for example, by using log x in-
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stead of x, or by using Fisher's transformation
z = 1/2 log 1(1 + r)/(l - r)J instead of r) to make the new var-
iable much more nearly normal in distribution.

1.6 The Power of a Test

A null hypothesis regarding the value of a parameter 0 is said
to be simpe if it specifies the population completely. Otherwise, it
is said to be composite. If a variable x is normally distributed in
the population with known variance O'5 but with unknown mean J"
the hypothesis that p =/Ao is a simple hypothesis, since the population
distribution is then completely determined. The alternative hypo-
thesis is that /1. = Fig where /4, is different from /"o . If we
are prepared to consider any possible alternative, we must allow
either 1"A -C ) or AL& > , , and this is called a two-sided alternative.
Sometimes, however, we are interested only in the possibility that
J"I >,.L", We may, for example, want to know whether a new treat-

ment or process will improve the quality of a certain material and
we feel sure that the treatment cannot make it worse. In such cases,
we have a one-sided alternative.

Let us suppose that we want to test the simple hypothesis
0 = e. against the simple alternative hypothesis 6 = el, using the
statistic T. Let us also suppose, for convenience, that T is dis-
tributed continuously in the population of all possible samples of the
given size N with a density functionr f(t I eo) for 0 = 00. If the re-
jection region is denoted by R, the size of the test is given by

S f(t I eo) dt = Ot (1.1)
()

The power of the test is

P(e) = f f(t e)dt (1.2)
(It)

for 0 =#= 8o. When e = 1 ,

P(6e) = I - , (1.3)

where ( is the probability of an error of the second kind.
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If the distribution function of the statistic is F(t I 0.), which
is the probability of a value equal to or less than t on the hypothesis
that 0 = 00, we can write f(t Ie o) dt = dF(t I 0o), and this notation
applies even when the statistic takes only discrete values. The dis-
tribution function is then to be interpreted as meaning the sum of the
probabilities for all discrete values of T equal to or less than t.

The function P(e) is called the power function of the test. The
ideal test would be One in which OfC= 0 -and P(O), = 1 for all~ 8 A
The curve of P(O) would re~semble that in Figure 1, and there. woupd
be no errors of the first or second kind. The null hypothesis'. would
never be rejected when true and always rejected when false. This
happy state of affairs seldom, if ever, arises.

W e)

S~eo

Fig. 1. Power Function of an Ideal Test.

Instead of P(O), the function 0 (0) = 1 - P(O) is often used. In
this form it is called the operating characteristic (O.C., for short) of
the test.

In practice, the power function of the test is more likely to re-
semble the curves of Fig. 2. If e is near 'o, the power is small, which
means that there is small probability of rejecting the hypothipsis e = So
when 0 is really equal to 01. However, in such a case no great harm is
done, because we are only replacing the true value by a nearby one.
When the distance between eo and 01 is large, a useful test will have a
value of P(0 1 ) near to 1.
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PAe)

Fig. 2. Typical Power Functions of a Real Test,
correspondi-ng to different Regions of Rejection.

In general, the region of rejection R, for a given size CX , can
be chosen in many ways, each of which gives rise to a test with a
different power function. If it happens that the test corresponding to
a different region RI has a power curve which lies below that
corresponding to R for all values of e except 00, then the test using
R. is uniform.ly more powerful than that using R'. The probability ot
of an error of the first kind is the same for both, but the probability

iA of an error of the second kind is always less for R than it is for
R' That is, we shall in the long run more frequently go wrong if we
use the test based on RI to distinguish between e0 and 01 than if we use
tke test based on R.

If this is true for every possible choice of RI, then R is said to
be a uniformly most powerful test, and if such a test can be found we
shall be perfectly satisfied. Unfortunately, however, such tests are
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seldom available, and what often happens is that R' will give a power
curve which is above that of R for some values of 0 and below it for
other values, as illustrated in Fig. 2.

1.7 The Neyman - Pearson Lemma

We suppose that X is a random variable which can take values
x lying in a certain region D. If X is discrete, like the number of
spots on the upper face of a die, the possible values of x are isolated
real numbers(e. g. 1, 2, 3, 4, 5, 6). If X is continuous, like a
measured height, the possible values of x may form an interval or
set of intervals of the real axis. If X is a set of N observations or
measurements, the region D is N-dimensional. If R is a sub-region
contained within D, the probability that x belongs to R is given by

SC,(x C R) fdF'xI 8)
(R) (1.4)

where F(x 1 8) is the cumulative distribution function for x and de-
pends upon the value of a parameter 0 (or possibly on several parameters).

If the variable X is continuQus

dF (xI 0)=f(x dx

where f(x I G)dx is the probability that x lies between x and x + dx
for the given value of 0. If X is discrete f dF(x 1 e) is the sum of

(it)
of the probabilities f(x I e) for each of the distinct possible values of
x which lie within the region R, for the given value of 0.

Suppose we now want to test the simple null hypothesis 0 = eo,
against the simple alternative hypothesis 0 81. (It is understood
that any other parameters occurring in the probability law of x are
known precisely). Let the required level of significance be (X . Then
the test, which consists in rejecting Ho when % C R and accepting Ho
in all other cases, will be a most powerful test if the critical region R
satisfies the two conditions:
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(i) fdF(x 0. = (1f~

(0) dF (x I 1l) = minimum
ti)

Neyman and Pearson (1933) proved that if a region R exists
which satisfies (ij and is such that x belongs to R whenever

f(x 1 o0) / f(x 1 01) < c, where c is some constant,

and such that x does not belong to R whenever f(x I eo) / f(x 101) > C,

and if also R* is any other region for which rdF(x I 8o) e ,
(R*)

then dL (xI e,) dS dF(x ek).
(RO) (R)

This means that the test using R is a most powerful one of size Of.
Unfortunately, a region with the stated properties may not exist.
This situation is likely to crop up when the distribution is discrete.
An example where the region does exist will be given in 2. 1.

The ratio f(x I 00 )/f(x I )1) is called the likelihood ratio.
More generally, if the possible values of 8 form a set denoted by A6

and if the null hypothesis Ho implies that 8 belongs to a certain
sub-set C4 of X1 (in symbols, 8 E L0 ), the likelihood ratio
L(x) is the ratio of the maximum value of f(x) under H0 to the
maximum value under HI, i. e.

L(x) = max f(x e 8) / max f(x 0 8) (1.6)

If L(x) is small, the observed x is much more likely under H1 than
it is under Ho, so that it would be unreasonable to maintain Ho.
The likelihood ratio test consists in rejecting Ho when L(x) < c,
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c being a constant so chosen that

Pr IjL (x) 4 c H 0 1l .a (1.7)

Most of the good tests known are likelihood ratio tests. In
many practical cases the statistic X is a set of N independent
observations forming a random sample. It has been proved ( S.
Wilks, 1938) that when N is large the distribution of - 2 log L(x)
is approximately jn ordinary %Adistribution when Ho is true and

a non-central % distribution when HI is true. The size and rower
of the test can be readily calculated from tables. Tables of Xare
readily available (e. g. Fisher and Yates, 1949 and C. M. Thompson,
1941-42), and Evelyn Fix (1949) has published a table of non-
central %t

1. 8 The Randomized Neyman-Pearson Lemma

We can generalize the conditions (1. 5) to read

IfdF(t oe) (1.8)
(R)

for allo W, and

S dF(t 0 6) = max. (1.9)
(R)

for all e A• W AL. Here F(t 0 0) is the cumulative distribution
function of the statistic T and 0 is the parameter being estimated.
The region of rejection R is chosen to satisfy (1. 8) and (1. 9).
According to (1. 8) the size of the test is not greater than C.

A possibility of increasing the power is afforded by allowing
randomized decisions, as suggested by Lehmann and Stein, 1948.
The total space of the statistic T is divided into three parts, R 1 , R1
and R 3 " If T falls into R 1 , Ho is rejected; if in R 3 , Ho is accepted;
but if T falls in RZ, we toss a coin or look up in a table of random
numbers to decide whether to accept or reject Hoo In other words,
we reject Ho with probability )P(T), whatever the value of T, Vf(T)
being 1 for T ( R 1 , 0 for T I R 3 , and a number between 0 and 1
for T C R1. •t*(T) is called a test function, or sometimes simply a
test.
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The randomized Neyman-Pearson lemma states that if L(x)
.is defined as in (1. 6) and if a test function 10(x) is defined by

"(x)= 1, when L(x)< c,

•t (x) = 0, when L(x) ) c, (1. 10)

S(x)= when L(x) c

then the test which consists in rejecting Ho with probability *(x)
is most powerful of size C for testing H. against Hl. The value of
c is given by

Pr L(x)x,< c IHoJ < CX , and )k 0 ( (X) by

Pr L(x)C c .Ho + 4.(x) Pr [L(x)= c I Ho= (1.1

If the region RZ,1 where L(x) = c, contains only a single value of x,
Jk'O (x) is unique, but if R2 includes more than one value of x it

will in general be possible to choose different functions satisfying
(11).

1. 9 Examples of Randomized Tests

Suppose we want to test the hypothesis that the proportion of
defectives in a certain manufactured article subject to inspection
is equal to or less than 10%, and that we want to do so on a sample
of 4 items by noting the number x of defective articles in the sample.
Clearly, x can take only the values of 0, 1, 2, 3 or 4, and the larger
values of x will lead to rejection of the hypothesis.

If the true proportion of defective articles is 0, the probability
of exactly x defectives in a sample of 4 is

p(x 1 8) = ( O) e(I e) 4  (.12)

For 0 = 0. 10, this expression takes for x = 2, 3, 4, the values
0.0486, 0.0036, &. 0001 respectively, and still smaller values for
* < 0. 10. The statistic T is here identical with x itself, so that if
--we take the region of rejection as Rl(x = 3 or 4), we have
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p (1 e) 4 0.00337

for all e .6 0. 10. If, on the other hand, we include also R 2 (x 2),

p(x 1 9) * 0. 0523
(R 1 + R 2 )

and so the size of the test is greater than 0. 05. The power of the
non-randomized test is

Pce) = p(x1 e) = e4 +43 (1-e)

for e > 0. 10. For 9 = 0. 20, this is 0.027 and for e = 0.30 it is 0.084.

Now let us consider a randomized test, in which, when x z2,
we reject Ho with probability 0,, where

Pr [ x >?1 H4 I + Y. Pr ( x= c Ho) =05, (1.13)

i.e. .0037 + 0.04869' = 0.05, or Ye= 0.95.
The power of the test is

P(9) Z WNx pAx 0)
where P(x)k= 0 for x = 0 or 1, 0.95 for x = 2 and I for x = 3 or 4.
Hence P(M) =4 + 493 (1 - 9) + 0. 95 e2 (1 - e)2,, which is equal to
0. 173 for @ = 0. 20 and to 0. 335 for e = 0. 30.

It was unnecessary in the above work to determine the value of
the likelihood ratio L(x). However, it is easily seen, by maximizing
OX -I )4"x, that L(x) = (I0/9)4 when x 0 and

Lfi) = (0. I)X(O. 9)4 / j (x/ 4 )X( 3 x/ 4 )4 -x , when x >0 . The value

for x = 2 is 0. 0144, which is the c of (1. 11). The perobability that
L(x) = c is the same as the probability that x = 2.

A practical method of rejecting Ho with probability 0. 95 would
be to use a table of random 2-digit numbers. Before opening the
table, decide on a particular page, a particular column, and a
particular position in the column (say the 7 th from the top). Then
look up the corresponding number, and if it lies between 0 0 and 94
inclusive, reject the hypothesis.

WAXD TR 54-9 12



In the following example, m(x) is not unique. Let the null hypo-
thesis H. be that x is a random item from a rectangular distribution
of mean 2 and range 2, and let the alternative hypothesis H 1 be that
x is from a rectangular distribution of mean 4 and range 4 (see Fig. 3).

fHo
He

0 1 a 3 4 5- 6

Fig. 3 Two Rectangular Distributions

The null hypothesis must obviously be accepted if 1 C x <2
and rejected if 3 <x46. The only doubt arises when x lies between
2 and 3 in the region where the two distributions overlap.
Clearly, L(x) = a, 14x'C2,

L(x) = 2 , 2 4x 3,
L(x) = 0, 34 x <(6.

The probability Vo (taken as constant for x between 2 and 3)
is here given by

ko= OC- Pr4 3,4x<6 Hol

Pr t 2(x3 I HoJ

,(o/(1/2) = 0. 1

If t= 0.05

The power of the test is P, where
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P =Prf3 <x <6I1 H)IJ + Pr 1 2 <x<3 1 H 1 3 - '

=3+ 1 1=31
4 T 10 40

Another possible value of t would be

and this may easily be shown to give the same size and power as

('x)-- 0. 1.

1. 10 Similar Tests and Unbiased Tests

A test 9O'()wll be most powerful for a given size o , according
to the criteria stated above, if the following conditions are fulfilled:

$ IVo'E) d FtyiJ8)41for 09 If co (1. 14)

f ), ,qr(xle) = max. for 0 . -(.15)

That is to say, the probability of rejection of the null hypothesis
when this hypothesis is true (i. e. when 0 belongs to the set &i) is
never greater than cW , and the probability of rejection when this
hypothesis is false is as great as possible.

The test is said to be similar if strict equality holds in
equation (1. 14). Neyman and Pearson (1928) originally considered
only similar tests, but it is not always convenient to limit oneself to
this case, as it puts a considerable restriction on the hypotheses
available for testing. Thus, if X1 X J, ... , Xn are independent
normal variates with mean ýW and var ance 0" L, and we want to
test whether/A >O , we can get a similar test of Ho () a*O)
against H 1 ( o) but not of Ho ( 0 0 ) against H 1 (p >). The
latter case is, however, at least as worth while investigating as the
former.

For this reason, another criterion of a good test was
introduced by Neyman and Pearson, that of being unbiased. The

WADC TR 54-9 14



test V,(X) is unbiased if (a)f]4(x) dF(x j e) < a , for 9 6 ,.

(bdf$(x)dF(x I e) > , for 6 -

That is, the probability of rejecting the null hypothesis is at least as
great when the hypothesis is false as when it is true. This is obv-
iously a desirable characteristic of a test. For a simple hypothesis
0 r 0 , the power curve of an unbiased test of this hypothesis has an
absodute minimum at 0 = 00. If the curve has a minimum at 0 = eo,
in the neighborhood of 8_, but falls below the value corresponding to
So at one or more points distant from eo, the test is said to be
locally unbiased.

1. 11 Sufficient Statistics

Given a set of random variables X , X,..., X from a
population which has a distribution characterized by a parameter e
(which may be one of a set of parameters), we can use certain
functions of the Xi (or of some of them) to estimate 8. Thus, if e is
the mean of the population we can estimate it by the arithmetic mean
of all the variables, or by the median, or by half the sum of the
smallest and the largest, or in many other ways, but not all these
ways are equally good. Some of them, although they may be quick,
fail to utilize all the available information. R. A. Fisher defined &
sufficient statistic as one containing all the relevant information in
the sample. Thus if the Xi are independent and come from a normal
population of unknown mean /U-and known variance d'x, it is possible
to change the variables to a new independent set Y-, YZ,." N, which
are linearly related to the X's and are such that Y is normal with
meanN,u.and variance " , while Y,' Y3$ ' YN are all normal
with mean 0 and variance 0- * If the hypothesis which we wish to
test relates to A , it is clear that Y., Y'" ... J YN contribute no
information, and all we need worry about is YI" It is easily verified
that the following set of Y's satisfies the required conditions:

Yl = (X 1 +x + .... + Xn)/ U4t

Y2 =xl - x 2 1)/42
Y3 = (X1 + x 2 - 2x 3 )/46

YN = (XI + XZ 4 .... + XN - 1 " (N - 1) XN 14 '04
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'/2.
and Y 1 is simply the arithmetic mean of the X's, multiplied by 4 •
The arithmetic mean is therefore a sufficient statistic for estimating /t.

A more precise definition is the following: The statistic T is
sufficient for estimating 0 if for any other statistic T' the conditional
probability (or probability density, in the case of a continuous variable)
of T', given T, is independent of D. The probability of the observed
sample is then given by

P()( )6) =IP (T, 0 g (X), (1. 16)

where P (T, 0 ) is the probability of the statistic T and g (X) is a
function of the sample values which is independent of B. Hence, if
L = log P P

L = L 1 ( T, 8 ) + LZ, (1.17)

where L is independent of 6, so that a knowledge of L1 will give
all the iniormation about e obtainable from the sample.

The condition of sufficiency does not determine T completely.
Any function of T is also sufficient. We naturally choose a function
which gives a consistent estimate of e, and if possible one that is un-
biased. In problems of testing hypotheses we can restrict ourselves
to sufficient statistics, because of the theorem that if ý& (X) is any
test and if T is a sufficient statistic, it is possible to find a test / (T),
depending on T only, which has the same power function as YI(X) and
so is equivalent to t(X). This test is in fact defined by

where t is any observed value of T.

TESTING THE MEAN OF A SAMPLE FROM A NORMAL POPULATION
OF KNOWN VARIANCE.

2. 1 Simple Hypothesis against Simple Alternative (One-sided)

Let X 1 , X2 , . . ., XN be a set of N independent observations
of a variable which is normally distributed in the population with un-
known mean (- and known variance O" . At first sight, this seems
rather an unreasonable assumption to make, but it is not without
justification in some circumstances. It may happen that conditions
affecting this variable have changed in such a way that the mean value
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is pushed up or down while the amount of variation about the mean
is substantially the same as before. The variance may then be
estimated with considerable accuracy from previous observation,
but the new mean is not known.

Let the null hypothesis Ho be that/A. = •eand the alternative
hypothesis H be that 1 = tx,, where we may suppose fW>/As . The
test is therefore of a simple hypothesis against a simple alternative.
The statistic used to estimate/AL is the arithmetic mean X, the prob-
ability density of which is

S/2. -N(f .$.,)Z/,I Z.1

f(RIPOA) = (N/Zira) e2CT(.1

The likelihood ratio described in the Neyman-Pearson Lemma, § 1. 7
is therefore

fC; I JA,) =Czp Az 1f (R I/A 0') a2 Ao(r 1~~) (2.2)

so that the condition f(" I J-o) / f(ý j p',) < c is equivalent

t - CLg/.o?~ 2.3)to 27x - Q I+Jo ) > C , or 3- > C: a •23

where ci and cz are other constants depending on c and on the
known values of/.o,,. 'and N. The size of the test is given by

00

__N_ 1/_ - x- 7 / 2 q 2 dx, (2.4)

f CIL / 21/2(Zo
since R is here the interval c2 to oo . If v = NI/2 (x -/-•,)/ ,

and vO N 1 c2  -. / a" , equation (2. 4) gives

O : I- (vo), (2.5)

where 4P( (v)= dv ad -~r = -Lr

whence vo, and therefore ci -can be obtained. Thus, for( : 0.05,
vo = 1. 645.
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The power of the test is the probability of rejecting H when
is really equal to JAI , that is, the probability thati 1 c2 °when

the probability density is given by

The power is therefore00

P(z )=f= ff(I; )d= -I (v1 (2.6)

where v, = N1 / 2 (c2 - 1A, )/O = vo - (m, ..A)N /0" = 1. 645 - N1 2 z

with - = (T,-/Ao )/-

Some power curves are shown in Fig. 4. For example, if z = 0. 3
and N = 9, P( Z )=I - (0.74S) = 0.228.

2.2. Size of Sample necessary for Detecting a given Difference17n-the Mean . . . . .. . .

The simple example in § 2. 1 illustrates how power functions
may be used in designing experimeats. If the true mean j differs
from the assumed mean tA0 , we may or may not be able to detect
this difference by using a sample of size N. Let us suppose that
we want to have at least a I00 p% chance of detecting a difference
equal to a times the standard deviation. Since P( Z) in equation

(Z. 6) is the probability of rejecting the hypothesis that the mean is

rowhen it is really I'A, we have

P al (l. 645 --. N'1 7) (2.7)
Some values of N calculated from this equation, for given values of
P and z, are collected in Table 1. It appears, for instance, that
to have a 90% chance of detecting a difference in the means equal
to 0. 3 of the standard deviation (with a test which has only a 5%
chance of claiming that such a difference exists when in fact there
is no difference at all) we need a sample size of at least 96. This
assumes that any difference that does exist can only be an increase.
but the same result holds if we know that the difference must be a
decrease. The two-sided alternative will be discussed in the next
section. In the first two linesd Table 1, the &ample sizes, being
large, have been rounded off.
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TABLE I

Size of Sample necessary to detect with Probability P a One-
sided Difference in the Mean equal to Z Or (Normal Population).

z 0.9 0.8 0.7 0.6 0.5

0.01 85,700 61,900 47,100 36,100 27,100

0.02 21,410 15,460 11,770 9,010 6,770

0.05 3,426 2,474 1,883 1,442 1,083

0.1 857 619 471 361 271

0.2 215 155 118 91 68

0.3 96 69 53 41 31

0.4 94 39 30 23 17

0.5 35 25 19 15 11

0.6 24 18 14 11 8

0.7 18 13 10 8 6

0.8 14 10 8 6 5

0.9 11 8 6 5 4

1.0 9 7 5 4 3

1.5 4 3 3 2 2

The probability of apparently detecting a difference that does not
exist is assumed to 0. 05.

WADC TR 5'4-9 20



Z. 3 Simple Hypothesis against Two-sided Alternative

Let the null hypothesis H. be that x& •,, and the alternative
hypothesis HI that >#oor/Axo,. Let us also agree to reject H0 if
either R -to >c or po -' > c, where c is a fixed value, determined
by the size ox of the test. By (1. 1), we have

/Ao-G

f f(1Ao )d I+ S f (X_ ad= Oe (2.8)

where f(I Uco) is given by (2. 1).

Due to the symmetry of the distribution, both integrals are
equal to Ok/2.

Putting v = N I/ 2  (I - TA )/ - , 0(v) = (21T) "1/2 e -v 2

and i (u) -f (v)dv, we find
-00

00f (-,)dv 1- l-(c /0)= NC1/Z, (2.9)

C mI/N
so that c is known when (X has been fixed. If, for example, 0' = 0. 05,
we readily find from tables of the normal law that CP (c N1 / / 2 ) =

0.975, whence c = 1.96 T0N"1/2.

The power of the test, by (1. 2), is given by

IAo +C

P ( t)=1I f f( lILA) d;
Po C

S 1 , W[96 -T N 1 2  0*- 21

+ Ele 6- N' 1/ 1 0"
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If z = (p-. .o) /IT , the power function in terms of z is

P(z) = 1 - • (1.96 -N1/2 z) + i ( -1.96 -Nl /Z) (2.10)

This function is drawn, for a few selected values of N, in
Figure 5. The curves show clearly how, as the sample size
increases, the test approximates more and more closely to
the ideal test pictured in Fig. 1.

Figure 5 also shows that for a sample of 9 the test is not
very powerful in rejecting a false hypothesis. Even when the
true population mean and the hypothetical mean differ by a whole
standard deviation, the chance of not detecting this discrepancy
is about 0. 15.

We now prove that this test is identical with the likeli-
hood ratio test.

The probability of the observed set of N sample values,
x , x 2 , . N , on the assumption that the true mean is

(27 .- N1 expE Cxi. )zl1 2 T

and this is the probability that is to be maximized in (1. 6).

Since in this example wconsists of the single value • , the
numerator is simply

(21T )-N/Z exp [ - (xi - /•( )2/z23.. J

The denominator is a maximum when A = x, so that

LA exp [3(xi /. ) 2/Z J
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or logL 2 (Xl (2.1 1)

'The condition - 2 log L > c 12 corresponds therefore to

2 2 2.1/2
(1. Po) c IN, so that x -&;b-ClI N" or

x "?• ,. c, 1 iN'l/2 and so is the same as the test given above

with c 1 07N-I/Z = c. To say that - 2 log L c12 is of course the

same as te say that L e'CI/2.

Since -2logL N(I-_IA.)2 /py , which on the nullhypo-
tkesis is the square of a standard normal variate, it follows that
its distribution is that of %"•with 1 degree of freedom. The asymptotic
approximation mentioned in 5 1.X is in this case exact for all N.

7
Z. 4 Size of Sample necessarx for Detecting a given Difference in

the Mean with Two-sided Alternative.

Since P(z) in equation (2. 10) is the probability of rejecting
the hypothesis that the mean is pAawhen it is really A-x, we must take
P(z) as given, say 0. 80. Then

N1. 2 -z N . (2.12)

The same numerical values occur whether z 70 or < 0,
because of the symmetry of the normal curve. It is clear from
Fig 5 that for z - 0. 1 the value of N will be near to 900 (the ordinate
at z a 0. 1 and the abscissa through P(z) = 0.8 meet at a point be-
tween the curves for N = 100 and N = 900, but much nearer to the
latter). Similarly, for z -= 0. 3, N is a little under 100, and for z = 1,
it is a little under 9 Hence z N 1 / 2 is approximately equal to 3,. 1/2
and § (-1.96 - z N ) is therefore practically zero. Since
S(-.I84.6) = 0.2, equation (2. 12) is approximately equivalent to

1. 96 - z NI2 a - 0. 8416, or N = (Z.802/z) , whence N is readily
calculated for any given z. Similarly for a power 0. 90, we should
have N = (3.242/z)Z and for a power 0.50, N = (I. 960/z)2 . These
approximations may be checked by substituting in the exact equation
(2. 12). We thus arrive at the values given in Table II, for sample
sizes necessary to detect a difference of Z•in the mean with the
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TABLE II

Size of Sample necessary to detect with Probability P a
Difference either way of Z q" in the Mean. (Normal Population).

S0.9 0.8 0.7 0.6 0.5

0.01 105,200 78,600 61,800 49,000 38,500

0.02 26,280 19,630 15,430 12,250 9,610

0.05 4,204 3,140 2,469 1,960 1,537

0.1 1,051 785 618 490 385

0.2 263 197 155 123 97

0.3 117 88 69 55 43

0.4 75 50 39 31 25

0.5 43 32 25 20 16

0.6 30 22 18 14 11

0.7 22 17 13 10 8

0.8 17 13 10 8 7

0.9 13 10 8 7 5

1.0 11 8 7 5 4

1.5 5 4 3 3 2

The probability of stating that a difference exists, when infact,
it does not, is supposed to 0. 05 throughout.
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assigned probabilities, the probability of falsely rejecting the null
hypothesis being assumed to be 0.05. Since N must be integral, the
left-hand side of equation (2. 12) will actually be A 0. 2, but N is the
smallest value for which this inequality holds.

For the same values of z and P, the value of N given by
Table Ir is greater than that given in Table I. This is because we no
longer know that the difference to be looked for is in a given direction.

2.5 Simple Hypothesis against Composite Alternative

The problem here is to find the distribution under H I, which
may be different for different values of the parameter e. Suppose, for
instance, that Ho is the hypothesis that a sample of N observations has
been drawn from a normal population of mean 1" 0 and variance 0*Y'. The
alternative hypothesis is that the mean is t and variance a" ', where

On the null hypothesis the quantity Z (%4Z /Ao)/0T

is distributed as )L with N degrees of freedom. If f I),is the

probability density for 1,and iI is defined by, andif •N.• isdfndb

Pr X > X } = (2. 13)

an unbiased test of H , of size ol , is given by the rule of reject-0

0 0

Under the alternative hypothesis, the quantity X x (xi -"/4 ) L/0"4
J.1

follows the non-central X distribution, with N degrees of freedom.
This distribution depends on a parameter

S= N(/IA-/,Ao )/ (2. 15)

and the probability density of 'X is
f( ) = 1/Z e (X/2) e Z (),-%14) (2.16)

- m- • f(m+1/2 N)
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When In 0, f(x) reduces to the ordinary X distribution.

The power of the test is

P Pr tjx >.-ý' (2. 17)

SfL f(x)dx

Numerical tables of non-central , giving A for specified
values of P, have been prepared by E. Fix (1949). Curves derived
from these tables for o• = 0.05 are given in Fig. 6. If, for example,

N = 10,, L a 0, fA r 0.5, and a= 1, we have X = 2. 25. It is
evident from the curve that the power of the test is about 0. 13. If N
were 40, •. would be 10 and the power would be 0.28.

2.6 Composite Hypothesis against Simple Alternative

The general problem of testing a composite null hypothesis
H0 (P £ •0 ) against a simple alternative HI (8 = @Iwhere e • 1-0

has been considered by Lehmann and Stein, 1948. 1

Let us denote the distribution function of x under HI by G(x)
and that under H0 by F8 (x), to indicate that it depends on the parameter

0. The proceduroe adopted by Lehmann and Stein consists in replacing
the composite hypothesis H by a simple hypothesis H° , this hypo-
thesis being that S has a particular distribution over 4j , so chosen
that the problem of distinguishing between Ho' and HI is as difficult
as possible. If we then find a most powerful test for Ho0 against HI
it turns out to be, under certain conditions, also most powerful for
Ho against H 1 .

It is often possible to guess the least favorable distribution.
With the same assumption as in 5 2. 1, let the null hypothesis be that
f.- , 14c and the alternative hypothesis that pc =u.,,where /4t >44*o It
seems fairly obvious that it will be more difficult to distinguish between
/& and,4', when t =,^,than when 1A </e.. The least favourable dis-
tribution of L. will therefore be a concentration at/A=fu. In other
words, the distribution function of /,is a step function with a single
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step of height 1 at M-0 , so that the simple null hypothesis H is
that A =4, The problem is reduced to that of 1 2.1. 0

The most powerful size o test of H against H1 is to re-
ject H with probability 4 (7), where

0

(• =1, when T > c,

S'(•) =0, when I c, J (2. 18)

c being determined by

P4r > C IL o}= J

Now if Pr i > c (A] < OC for all/ Aý-O , the test for H
against H1 is also most powerful for Ho against HI. But this isotrue,
because, as is evident from Fig. 7,

/

- -/ I __ _ _

0 h

/ IL V\

Fig. 7

the area beyondR = c gets smaller and smaller asfU moves further to
the left from /" • The test function (2. 18) is therefore most power-
ful for H0 against H 1 , and since it does not depend on the value of
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it is a uniformly most powerful test of the hypothesis/L .ro against
the composite alternative hypothesis Ix >1"

Again, let us suppose that we want to test the composite
hypothesis that either ý & zh ore$ -ft. against the alternative simple
hypothesis that/x = 0. It seems intuitively obvious that the least
favorable distribution of /4 for the test would be given by a probability
of 1/2 for each of the values/xL and - On this assumption we have

(-- N

2.

7C (2.19

The most powerful test of size oC for H is given by putting

*(2) = 0 whenf' (;) > cg() , (2.20)

where c is determined by the size of the test, namely

Pr f t (' )4 cg (;)I Ho'I = C4(. 2)

Now the first condition of (2. 20) is equivalent to: I (x) = 1
when -i i__3. aE

i.2O + e q l< C
that is, when LJlLWRA

I' I 9 ,O - + e, J•- <Cj

or 'when
cosh (Nrco'/ • ) < C,

where c1 is another constant.

The condition may therefore be written • • < C,•
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where c2 depends on c 1 . The absolute symbol occurs because of the
symmetry of the cosh function. 7 may be anywhere between -c 2 and
+c 2 . Since cz is merely another constant, we can drop the subscript
and call it c. This constant c is then determined by

Pr j 3 < c I H 0 }j= c<

But since the distribution function for/A- is a step function with steps
1/2 at -A.o and /t., we have

1/2 PrjI< c =/A.)f.o + 1/2ZPr~ R I< cfI t. - I"

and this condition will be satisfied by choosing c so that

Prý lI II< c~i. I f4=}~- Pr f cJ IL,= tJ = C. (2.22)

2 The distribution of '" is normal with meanf- and variance
(I IN, so that the value of c is determined by

I~N/2 cr)Ii- {N (-1f/)I 1 C (2. 23)(I -N (C -/ / • z

C. 0 C

Fig. 8
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The shaded area in Fig. 8 (or the equal and symmetrically
situated area under the other normal curve) is equal to O . It is
easy to see that if rk> tA, or if/x<-,Mo the area, for a fixed c, will be
less than that shown in the figure, so that

Pr j I <x 4 1t = Pr~jýit< c c'

for jtx >, /LA The test given is therefore the most powerful test of
sizeo( for testing the hypothesis that I/ti • Iijoi against the hypothesis
that V = 0.
The power of the test is given by

P=Pr[ III Clt& =o}
SC IV / (2.24)

0

The size of sample necessary to avoid (with probability P) claiming
that a difference of the mean from zero at last as great as Z C"
exists, when in fact it does not, is given by solving (2. 24) for
cN1/z /Ar and substituing in (2. 23) for a given value of Oc , with Z

Thus forCX= 0.05, Z = 0.1, andP = 0.5, we find that N = 532.
This greater than the sample size (385) given in Table 11 for the
same values of 0' , X and P. The reason is that we used Table 11
to test the null hypothesis/A- = 0 against the alternative hypothesis

I I = , whereas now we are testing the null hypothesis %P( = -z

against the alternative hypothesis Ix = 0. In the first case the
probability of wrongly claiming that a difference of the mean from
zero exists is equal to 04 , and the power is the probability of de-
tecting a real difference. In the second case the probability of not
finding a real difference is equal to o( , and the power is the prob-
ability of stating that no difference exists when this is in fact true.
If we want to be reasonably sure that we do not claim a non-existent
effect as real, but do not so much mind missing a real effect, the
first arrangement is the one to use and the sample size is given by
Table I1. If we want to be reasonably sure of finding an effect if it
exists, but do not so much mind claiming a non-existent one as
real, the second arrangement is better. Some sample sizes for
this case are given in Table MEI.

As an example, suppose we know from previous experience
that the width of a slot in a certain metal part is apt to vary, with
a standard deviation of 2 thousandths of an inch. If we want to have
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an even chance of detecting a real difference of I thousandth of an
inch in the mean, from an assumed standard value, with a reasonable
certainty (95%) that we shall not claim that this difference exists when
it really does not, we shall need, according to Table TI, a sample of
16. If, on the other hand, we want to be 95% sure of finding this
difference if it exists, but are content with a 50% chance of stating
that it exists when it really does not, we need a sample of 22 accord-
ing to Table TI I.

TABLE irn

Size of Sample necessary for Probability P of not finding a Difference
of Z T in the Mean where none actually exists. (Normal Population).

S0.9 0.8 0.7 0.6 0.5

0.05 4,329 3,425 2,874 2,465 2,127

0.1 1,083 857 719 617 532

0.2 271 215 180 155 133

0.3 121 96 80 69 60

0.4 68 54 45 39 34

0.5 44 35 29 25 22

0.6 31 24 20 18 15

0.7 21 18 15 13 11

0.8 17 14 12 10 9

0.9 14 11 9 8 7

1.0 11 9 8 7 6

The probability of stating that a difference does not exist,
when in fact it does, is supposed to be 0. 05 throughout.
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1 11 TESTING THE VARIANCE OF A SAMPLE FROM A NORMAL
POPULATION.

3. 1 Simple Hypothesis_ against Simple Alternative

Suppose that the variables Xi ( i = 1, 2, .... , N)
are independent and normally distributed with mean 0 and variance Cy
the value of 0.2 being unknown. Suppose also that we wish to test the
simple hypothesis H (that 62 = 2) against the simple alternative
hypothesis H (that (" 2  = .2 ).

1

The statistic used to estimate ( 2 will naturally be the
sample variance* v ( = s-) or, to remove bias, N-ir/(N - 1). The
probability density of v, under H0 , is

f,(v)= ( 2 Ivr(n2j:l I nv /2

where n = N - 1. The probability density g (v) under H is the same
expression with 62 substitutedfor To 2. Therefore

n/7. _Ln_ -
f~)g~) (2) (3.1)

First, we suppose that T, 2 > T5. . Then the condition
f (v) / g(v) 4 c is equivalent to v >c, where the second c is another
constant. (In future we shall often use the symbol C for an undetermined
constant which may vary from one line to another. This saves writing
subscripts such as cl, c 2 , etc.)

The test consists, therefore, in rejecting the hypothesis Ho
when v > c, c being determined by the condition

Pr f v >4 I }H0 = C( (3.2)

* i7 = -Some writers use N-I instead of N in defining %r

so that ,-r is then an unbiased estimate of G".
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Now when H is true, Nv / Q2 has the X 2 distribution with n
degrees of freedom, so that (3. 2) is equivalent to

Pr J % > Nc /6.21 (3.3)
n

When Gt 2 < T-?, the exponent in (3. 1) is positive so
that f(v) / g(v) increases as v increases. The condition
f (v) / g(v) < c is equivalent to v < G.

The power of the test (for OTZ > To. 2) is given by

P =Pr fV > c H1  =Pr XV,.9>Nc/G-,Jj (3.4)

if • is such that Pr > %, -I

we have from (3.3) and (3. 4) that

", Nc G71 2. (3.3)
Nc=N / ci.

so that if k =

k _ =/ ti->)P (3.5)

For given values of k and X , this equation may be solved
for P, given n, or for n, given P. The former solution is a
straightforward matter of interpolating in the tables of %? (such as
those of C. M. Thompson (1941) or A. Hald (1952)). Thus, for o(
= 0.05, andN = 10, = 16.9. Then, fork=2, "x =8.45,
giving P = 0.49.

Figure 9 gives power curves for a few values of N. When k < 1,
the in/equality signs are reversed, and

k = X 1 ,4/%21P (3.6)n, 1 -oL n, 1P,

Thus, for C0= 0.05 and N 10, X 2 3.325, and when
Z 0 "5 - P -- 0 .3 3 n , 1 - •K

In order to find the size of sample necessary to detect a
variation in the ratio T"2 / 2 = k from the value 1, or in other
words, to have a known probability P of rejecting the null hypothesis
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Z =z when in fact the true value of G"2 is k T.2, it is
:necessary to solve (3. 5) or (3. 6) for n. This can be most readily
done by means of the Wilson and I-Werty (1931) approximation for

according to which ( ' /n) is approximately normal, with
mean I - 2/(9n) and variance 2/(9n). Even for n as small as 4,
the error in r O = 0. 05 is less than 1part in 300. Writing s
for [z/(9n) ] wi , we see that (X L /n) rf. 1 + s8 _ s z",

where C4 1/2 - z2/

wr (z)d- = o, 0 (Z) (Zir) e

and similarly

X 2 1/3 1+82 aC•n,p p"L.- l+s =sz

Therefore, by (3.3)

k /3 =( - s + sz) /(-s +sz p),

and equation which is to be solved for s. If k < 1, replace z and z
and z respectively. P

A short table of values of N for different values of k and P
is given in Table IV. Fuller tables may be found in C. Eisenhart,
M. W. Hastay and W. A. Wallis (1947), Chapter 8.

3.2 Different Choice of Test Statistic

Instead of using the sample variance v as the test statistic

we may use the whole set of sample values. The probability of the
observed sample under Ho is

N (x) = (21 0-. 2 ) -N/Z e -1.xi2 2. <r c0

where x stands for the set X1, x, .... *
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Under HI it is

p Wx = (2- - N/2 - xi

If we agree to reject H° with probability l(x), where ) (x) = I when

PO (x) / p x C , and +(x) = 0 when po(•)/t"'(' > C

the test is equivalent to

iWx = 1 if X. > (3. 7)
2I

when CTI > 0.bT" and

/(x) =lIif 1 . (3.8)

when CJl 4 •

Now x xZ /T2 is distributed under H as with N

degrees of freedom, not N - 1, so that equations (Y.5) and (3.6) still
hold with N instead of -n' . This means that for a given N the power

is slightly greater than before, or, to put it another way, the size of

sample for a given power, as determined from Table IY, may be

reduced by 1. The reason for this is that we are utilizing the known

fact that the mean of the population is zero, whereas the test using

the variance does not use this information.

3.3 Composite Hypothesis against Simple Alternative

Suppose that the random variables X, are independently and

normally distributed with mean /L and variance 0 2 neither of
which is known. Let the null hypothesis H be that 0" = 0"a , nothing

being said about the value of 1A. , and let the alternative hypothesis H'

be that T = T, and A=/.A.!

If , " , it seems reasonable to assume that the difficulty

of distinguishing between H and H would be as great as possible ifO 4

we took = ,.
4

. . Any probability distribution of ltx over values

other than, ,A! could only increase the variance G0 , and make it still
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TABLE 1V

Size of Sample necessary to detect with Probability P a Variance Ratio
k different from 1.

p

k 0.5 0.6 0.7 0.8 0.9

0.2 5 6 7 8 9

0.4 10 13 15 18 23

0.5 16 20 Z4 30 39

0.6 26 33 41 52 69

0.7 50 64 80 1OZ 139

0.8 119 155 198 257 349

0.9 507 668 866 1,130 1,552

1.1 580 778 1,016 1,349 1,878

1.2 154 209 275 366 513

1.3 74 99 134 176 248

1.5 31 42 55 74 105

1.7 18 24 33 44 63

1.9 12 17 22 30 43

2.0 11 15 19 26 37

2.5 7 9 12 15 22

The probability of falsely rejecting the hypothesis -r 2 "2 is equal
to 0.05 throughout.
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different from 0"g

H,

7- x

Figure 10. Distributions of Xi und'7 hypotheses H 0, H 1 , H 0
0 0

t
For this case, then, we take H as the simple hypothesis C" = O
and Lk, = (see Fig. 10) and the problem is reduced to that of

3. 2 with • (xi -t4 )2instead of 'xi.4

The test is • (xi - i-! )Z< c (3.9)
where c is given by

Ix L / (3. 10)

Now, on the assumption of normality in the parent pop-
ulation, it may be easily shown that the probability that Z (x -Z-Aj < C

under H is never greater than under HoI , whatever the value of
0/A- . It follows, then, that (3. 9) is a most powerful test (of

size 04 ) of H against H 1 . Since this test depends on the value
of 1"j , it is not uniformly most powerful against a composite
alternative Gr = T" , with t& unspecified.

WhenT, >Cr,,the considerations given above do not apply.
A concentrated distribution of H at /= would be easier
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to distinguish from H than any other. Now it has been shown by
Neyman and Pearson that the test "reject Ho in favour of H1 when
Nv > c" , where v is the sample variance ;E(x. -R)2' / N, has
the property of similarity, that is to say, the test has the same
size whatever the value of JA- , and this particular test is in fact
most powerful among all similar tests for H against H.. Lehmann
and Stein, 1948, applied the method of § 2. 5 to the case G, > T'o
by choosing as the distribution of p- that unique distribution which
reduces the likelihood ratio test for Ho against H1 to the known
most powerful similar test. In this case H' is the hypothesis

2. 2. 0
that T = G and that the probability density f( 1A- ) for any
given t is

IfG" Ce.- (3. 11)

The test of H against H1 is then X Cxw C , c being
given by

Pr~ ~~~~ > C f4 ), J (3.12

This probability, however, is independent of the value of /A. and
depends only on T. and N. In fact,

r ~. (XA X~
ON.1 (3. 13)

Where f ( )is the probability density for with N - 1

degrees of freedom.

The test is therefore most powerful for H against H, and
since it does not depend on /A , or ", , it is a unqiformly most
powerful test against all alternatives.

This test can be extended to cover the cases
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and HO : G > a"o

H1 cr = 't (' 0 ), <L /&A

In both of these, the least favourable distribution of 0
would be a concentration at - = To . For the first case, it
is clear from (3. 13) that the size of the test _ (x , for d- : 1o
since C/T"will then be equal to or greater than C/0-2.. For the
second case, the same thing is true, since from (3. 10)

f. 14),
0

and the integral is reduced in value by putting 0' in place of '
when 0" > 1"o0

3.4 Power of the Above Test

Case 1: Y, 4 0'0 The power of the test for H. and therefore for
Ho, against H1 is

= (3. 15)

which is readily calculated from tables of the t distribution. Thus
if CK = 0.05, N = 5, .4-1 = 0, G. = 1 and To = 0.8, we find from (3.10)
that c = 1. 145. Then from (3.15), P = 0. 125. This is slightly greater
than the value (0. 110) given by using the sample variance.

The power of the test for Ho against the composite alternative
H1 ( T" (-, , t& unspecified) is

P=Prj Z(X C 1~c -/-,) JAI (3.16)

c being still given by (3. 10). We will take t4, as zero, as before.

Thequantity I Xnow follows a non-central X distribution
with N degrees of freedom, depending on the parameter

= N /M/-, (3.17)
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The probability density is as given in (2. 16), where x = / .
The power of the test is

P = f f(x)dx (3. 18)
O 2.

Numerical tables of the non-central X distribution, pre-
pared by E. Fix, do not help us here, since, for one thing, they
refer to the upper tail of the distribution, and, for another, they
require that . - O-t * The power may be expressed in the form

00 
IVo

~= & f ( r( (.2 W)iA - Y- , (3. 19)

where a= c/ .- ,, b 2= / andT(4A-%,f ) is the In-
complete Gamma function tabulated by K. Pearson (1922).

The integrand in (3. 19) vanishes at both limits and the
integral may be approximately evaluated by quadrature.

For the numerical values mentioned above and for . =

0.05, we have X/z = 0.977, c/ 1 ; 1. 789, and the power P is about
0.095.

Case 2: 0" >G•0-.The power of the test for H0 against H1 is

f C X
P j -- , (X (3. 20)

where c is given by (3. 13). The power is therefore independent of
/*•i "Power curves derived from (3. 16) for T, <-ýOand from (3. 20)

forG1 ;(r, , for a few values of N, are given in Fig. 9. If a,, % cro
the N given in this figure should be reduced by 1.

3.5 Composite Hypothesis against Composite Alternative

A more general case of testing arises when both the null
hypothesis and the alternative hypothesis are composite. Symbol-
ically,

H H5 0 43
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where W is a specified region of the whole space JA available for
e. If (X) is a test of size CX , we want it to be such that

Mi f yctc (xI1 L) :: ol for 6 C co

(ii) f 'ý () a j (-X 1o) =max, for & (3.21)

These conditions mean that (i) the probability of rejecting
the null hypothesis, if true, is not greater than c and (ii) the
probability of rejecting it if false is a maximum. If a test that
satisfies (i) also satisfies (ii) for all values of 0, it is U. M. P. , but
usually this is not so. Sometimes, however, we can get a U. M. P.
test if we restrict ourselves to a particular class of tests which
possess some desirable property. Among such properties are
those of invariance and unbiasedness. The meaning of an unbiased
test has been discussed in 1 1. 10. An invariant test is one which
is invariant under some suitable transformation of variables in the
sample space - naturally we will choose some simple and obvious
transformation such as a translation or a change of scale.
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IV. STUDENTS' t -TEST

4.1 The one-tailed t-test

In the examples given in Chapter 11 the variance under
the null hypothesis was supposed known. In 1908, W. S. Gosset
("Student") introduced the now familiar test for the mean of a
normal population, a test which depends on the sample mean and
the sample variance but which is independent of the population
variance.

Suppose that a sample of size N is talken from a normal
population of mean IA- and variance C" . Let the null hypothesis
be H. : 0  = P 0 , GT unspecified.

Without loss of generality we can put /, = 0 (we merely
noed to subtract •o from all the observed sample values.) An
alternative simple hypothesis H is that and T
where we will suppose first that Jt > 0. [r wi) 1''=

Under the null hypothesis, the statistic T

has the Student t-distributlon with N - 1 degrees of freedom.
The probability density i-

f(t) = A [ + (4.1)

where /A = (N - 1) /lCB [(N-l)/2, 1/2] and B [a,b] is the
Beta function of a and b. Therefore f(t) is independent of a
The distribution is symmetrical about 0, which is the expected
value of T. If the observed value of T exceeds t o ,where ta
is so chosen that

f (4.2)

and if we agree to reject H when T > , then we shall clearly
commit an error of the first kind with probability o( . Since we
are considering only alternatives withM , >0, we are using only
the upper tail of the t-distribution, and the test is one-tailed.
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If we suppose that p ,-Co , we shall reject H when - T > .t'
and this is also a one-tailed test, using the lower tail.

If the null hypothesis is H 0 : I'-,o (,/>o) the probability
of error of the first kind will not be greater than oc . This
follows because the t-distribution is symmetrical with a maximum
at t = 0.

4.2 The t-test and maximum likelihood

The probability density for a particular observed set of
sample values x V x 2 . . . . .. . Xn, on the null hypothesis, is

so that

L0 = log p = -r X4 Aoj(2cr)

C-f4 / 0' - __ + (4.3)

where l and s 2 are the sample mean and sample variance respect-
ively. On the alternative hypothesis the probability density is Pl'
and

From (4.3), L (and therefore po) is constant over the surface
X i.= constant. Suppose we pi ck a region of rejection on

each such surface, equal in area to a fraction c of the area of the
surface. If ý = 1 when x lies in this region and 0 otherwise, the
expectation of 4k for a given value of 2"XZAwill be W . The whole
region of rejection R will be a combination of the regiornfor all
possible values of x x , and it is obviously independent of T
We have

f :(*- (4.5)

0R)

The test will be most powerful if the probability of rejection of H
0
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when H1 is true is as great as possible. That is, we must choose R

so as to maximize

P: f . .. , (4.6)
(P.),

subject to the condition (4.5). The solution of this problem for ML, >o

Sby the method of Lagrange multipliers (see, for example, Kenney
and Keeping, 1951, pp. 392-3), leads to the conclusion that R is
defined by the condition t > tx , where t, is given by (4.2) and
t has the distribution (4. 1). The method of maximum likelihood
therefore leads to the ordinary one-tailed t-test, and since this
test is independent of the particular value of i" , chosen, it is
uniformly most powerful (U. M. P.) against any Hi with j(, > o
whatever the values of T and C, may be. Similarly, if /.s<o the
test - t > &,, is U. M. P., but if/4,1 mw be greater orless than

zero no U. M. P. test exists.

4.3. The power of the t-test

The power of the testis the probability of rejecting H0 when

HI is true, and is therefore given by (4.4) and (4.6) with R defined
by t 7 t , . Now the probability of a particular set of observed
values under H , namely p , dx ...... dxM, can be expressed as
f(Z, s ) dR ds where f(i, s ) is the jointprobability density for

x and a, and is given by

f -~)S• (4.7)

where K-1a-NrW /

Since t =(N-I)' S/$ , we can find P by integrating (4.7)

over allhsuchthat >(N- W)"' s tt and over all s from 0 to oo.
(For any point in this region, t > t' ) That is,

P Kf a# f o "- a
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On putting z = N ( -/A,)/0I and IV /
so that z is a standard normal variate, and %" has the % distribution
with N - 1 degrees of freedom, we find

S= f (-'- (Air) d; _d

where n = N 1, and P,= N /cr" This may be expressed,

by a change of variable, as

The integral can be evaluated numerically when ce , n and po are

given, so that the power of. the test is obtainable as a function of ,.s,
and •', . The power function is not independlnt of c, ; Dantzig
(1940) showed that no test of the hypothesis H can exist with a
power function independent of T, . In a number of practical cases,
however, we do have some rough knowledge of Cr, , and if so we
can use the tables calculated from (4.8) for estimating the size of
sample necessary to detect a difference between 1 and o of a
given order of magnitude.

As an example of the use of this method, suppose a new
treatment is under investigation, intended to increase the strength
of a certain alloy. The claim that it does produce an increase is
tested on a sample of N pairs, each pair consisting of one specimen
of the alloy having undergone the new treatment and one specimen
having had the standard treatment, the members of a pair being
in other respects as alike as possible. The increase in strength
is measured for each pair. We shall not be interested in a
possible decrease in strength, and so we shall use a one-tailed test.
The standard deviation of many measured strengths under the
standard treatment may be taken as an estimate of C" , and the
size of sample necessary to detect an, average increase of strength
equal to k 4T can be determined for fixed values of the probabilities
of error of the first and second kind.

4.4. Tables of the Power Function

If t is defined as 1 :8/S -- -M , thenon the null
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hypothesis Ho (Q = )t has the ordinary Student t-distribution,
but when t = t , and T = C, , (that is, on the alternative
hypothesis H ) t has what is known as the non-central t-distribution.
The probability density of t is 2.

A ( + H ( *'") (4.9)

where I/A IA" D E•/Z /3

and I~x 26-, z f+ 0H(x) = •_)i rc__. S '

When = 0 , HC0) = I and (4. 9) reduces to the form (4. 1). The
probabillty integral of f(t) is the power of the t test,

i.e. P f f t(t) O"_

which can be shown to be equivalent to (4.8).

Tables of P were calculated by Johnson and Welch (1939).
These tables are necessarily of triple entry, since P depends on n,
el and cx . They may be arranged in various ways; for example,

to give 10j, for selected values of n, of and P ( = I - (o ), or to
give 41 for selected values of r, , r, and P. The former arrange-
ment was preferred by Johnson and Welch.

Suppose that 0( and n are given. Then t o is determined
from the ordinary t - table, and P) can be found, after some
preliminary calculations, from the tables of Johnson and Welch.
Directions for the use of the tables are given on p. 272 of the
reference cited.

Shorter tables, which however are better adapted to the
particular problem of the power of the one-tailed t-test, were
calculated by Neyman and Tokarska (1936). These give for ( =
0.05 and 0. 01, and for all n from 1 to 30 the values of 10,
corresponding to selected values of P . The curves in Fig. 11
were drawn from these tables. They show for selected values
of N the power P corresponding to k = IT, = P N"A
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Suppose for instance we know that aq = 10 and N = 17.
If the chances of each kind of error are equal to 0. 05, we find from
the Neyman and Tokarska tables that = 3.44, so that 1A, =N ,=
8.34. This means that we have a 95% chance of detecting a real
difference in the mean equal to 0.83 of the standard deviation, when
the probability of apparently detecting such a difference when none
really exists is 0.05. The result can be roughly checked by Fig. 11.

As a rough approximation for moderate-sized samples,

F tat - 'Zp ( + (4.10)

where Zp is the standard normal variate which is exceeded with
probability P.
With the data above, X,= -1. 645, so that 1. = 1.746 + 1. 645 (1. 095)

= 3.47, which is not greatly in error.

Another approximation, for N > 10, is

P = Pr Ao- (4.11)

where t is the ordinary central t with N - 1 degrees of freedom.

Thus, forP= 0.95, withN= 17, • = - + 1.746= 3.49.

4.5 Test of the Difference of Means in two Samples

Suppose two samples of sizes NI and N. give means of
R, and 2., the true population means being JAI and t^, and the
standard deviation T being the same for both populations. The null
hypothesis Ho is that R/A -,l -,< o and the alternative hypothesis H 1 is

that t, 1. _ A c Io).The statistic R,-L J -IA

where Y is an estimate of G equal to ( IV, ,4- + Os..)/(fV' + W3.-2•)

has the t distribution with NI + N2 - 2 degrees of freedom, on the
hypothesis that P., -,M$ =0. We reject this hypothesis when t > -t, ,
the chance of error in so doing being cx . The chance of error in
rejecting H ( that / .ci) is therefore not greater than o(
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The quantity corresponding to f, in the above theory is now

Cr- 1- --w) ; and the number of degrees of freedom
is n =N +N1 - 2.

Suppose, for example, that N = N = 10, so that n = 18.
The value of P for 0k = 0.05 and P = 0.9 is2 3.04, and therefore

(). -/)/Cr= 1. 36. This indicates that a difference in the means of
the two samples as great as 1. 36 T would stand a chance of 0.9 of
being detected by the proposed test.

This result could be approximately read from Fig. 11, but
in using this figure for the two-sample problem we must take N as
n + 1 (in this case 19) and multiply the value ofk by("+i i/' ( ) -. q"
The value read from the figure is about 0.7, which gives (1 ,L _/4,),4T
z 1.4.

As another example, let us suppose that we are interested in
the difference tOf tensile strength between two types of casting, the
variability being about the same in the two types, and that we use a
t-test on samples of N of each type. For a given o = 0. 05, say,
we can calculate the power corresponding to an assigned k , that is,
the chance of detecting a superiority of the one type over the other
equal in amount tok (" . We now have P= k (Nv/.//Landn = ZN - 2.
Table V, calculated from Neyman and Tokarska's tables, gives k
for certain values of N. It shows, for instance, that if we want to
have at least an even chance of detecting a superiority in the mean
equal to one standard deviation, we should use samples of at least
6 or 7 each.

4.6 The two- tailed t-test

In many problems we are more concerned with the magnitude
of the difference between the true population mean "L- and some
assumed value ý4e than with its sign. We may want to be reason-
ably sure, for example, that the mean thickness of a batch of mica
washers does not differ by more than a set amount from its nominal
value, but not be particularly concerned over whether the washers
happen to be a little too thick rather than too thin. The null hypo-
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thesis is fA- = /Ao and the alternative hypothesis U = aiI , 0= 0"1
where Jfj-JA.= k G-t . The null hypothesis is rejected when

>- > ot ;t,, being determined by

F0 
(4. 12)

where fo (t) is the probability density for central t.

The power is given by

00 .13

)o)(4. 13)

where e = ( ± + tvJ-

The non-central t distribution is skew, and if k is
large the area in one tail is negligible. Unless N is very small
this is true for quite moderate values of k. Thus for N = 10 and
k = 0. 216, the probability that t 4--t (if/A, >/Aco ) or that -t > -'U
(if p.*, <plo ) is less than 0. 005. In the former case, the power
is practically equal to Jf0  ) .

-t,

is the probability density for non-central t. But by (4. 12),

f (4. 14)

so that we can use the tables of the one-tailed test for the present
problem, provided we remember that when these tables specify

LN = 0. 05, we are really using OC = 0. 10.
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TABLE V

Power of the t-test for distinguishing between the Means of two
Samples of size N, with common T . (Values of k such that P is the
probability of detecting a difference equal to k C" , when oC = 0. 05.)

N; P 0.2 0.4 0.5 0.6 0.8 0.9 0.95

3 0.78 1.36 1.62 1.88 2.48 2.94 3.32

4 0.64 1.11 1.32 1.52 1.99 2.35 2.65

5 0.56 0.96 1.14 1.32 1.73 2.03 2.29

6 0.50 0.86 1.OZ 1.18 1.54 1.82 2.04

8 0.42 0.73 0.86 1.00 1.31 1.54 1.73

10 0.37 0.65 0.76 0.88 1.16 1.36 1.53

12 0.34 0.59 0.69 0.80 1.05 1.23 1.39

14 0.31 0.54 0.64 0.74 0.96 1.14 1.28

16 0.29 0.50 0.59 0.69 0.90 1.06 1.19

25 0.23 0.40 0.47 0.54 0.71 0.84 0.94

50 0.16 0.28 0.33 0.38 0.50 0.59 0.67
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4.7 The One-tailed Test as an Invariant Test

We arrive at the same test by searching for the most power-
ful invariant test of the hypothesis H :0 - 0 againstHI: H 4 > 0,
the variance of the parent population being unknown. The mean M
and the variance V jointly form a sufficient statistic. If we put
T = M/VIA , then T is invariant for the class of transformations
X, I I X1, where c is a positive constant, since of course M = cM
and V1 = cZV. (This transformation merely amounts to a change of
scale in the measurement of X).

The T so defined differs from the T defined in § 4. 1 only
hy not having the cons'.ant factor (N - 1)l/Z, and so is essentially
the same.

IfZ=M/CY andW=V/" , then on the hypothesis H, Z is
normal with mean 4 = /L4 / 0- , and W has the :0distribution with
N . 1 degrees of freedom. The joint probability that Z lies between
z and z + dz and W between w and w + dw is thereforeCe- N ('- k)•/ S.1 I- 3)/. - JI A.d-

Now T = Z/W 1 w/A , so that for a given value w of W, T = w- Z. If

f( t ,w )dt dw is the joint probability for t and w, with dt = w"'/Z dz,

we have VA S, ) '

fs(t, w) = C -e. .e.

(4. 15)

The probability density for t, regardless of the value of w, is given
by integrating (4. 15) over w from 0 to oo . That is,

00 -~l Q4,h. -j,/ L'4/ (I 12.

fs(t)=G f IV

0 (4. 16)

The null hypothesis is equivalent to S>E 0, and the altern-
ative hypothesis to 9 > 0. If we choose a particular alternative

&j > 0, and apply the method of § 2. 6, the difficulty of dis-
tinguishing between Ho and H, may be expected to be as great as
possible when S' = 0. If we let Hol be the hypothesis that $ = 0,
the most powerful invariant test of size a( for distinguishing between
H-0 and H 1 will be
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,(t) = 1 when fo (t)/f g (t) 4 c.

This ratio can be written

F f Y L- 't-) / zF_ (, A-) oL.(4. 17)
where (for t > O) v =w t, k = e and ...P4-) z .." e C-

and it is not difficult to show that F(t) is a strictly decreasing
function of t, i.e. (F(t 1 ) < F(t?) if and only if t*> t?. This means
that the test can be written

ý (t) = 1 when t > c,

where c is now determined by

Pr i t >c I Ho (, (4.18)

and so is given by the ordinary table of t.

The same conclusion holds for t - 0, v in (4. 17) being now

equal to - w ,t and e V replaced by e

Now, from the shape of the t distribution, it follows that
the probability that t > c, under Ho : t < 0, is never greater than
it is under Ho' : t& = 0 (compare Fig. 7, which is drawn for the
normal curve with mean A. 0 . The general shape of the t-distribution
resembles this curve). That is,

Pr j t >c t Ho I <0

It follows that the test is most powerful for distinguishing H, from Ho.
Since it is independent of the particular value •g chosen, it is U. M. P.
among invariant tests for distinguishing H° (/M • 0) from H (• > 0).

4.8 The Two-tailed Test as Invariant Test

Here we want to distinguish between H0 (tA. = 0) and H (y#0),

or, in terms of the quantity t4 = /G• - introduced in § 4. 7, between
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0 and • 0. If we again use the Lehmer and Stein method,
of replacing H by a "most difficult" simple hypothesis H , it
would seem reasonable to take for H' the hypothesis that 8, is
equally like to be + E,, where • is a fixed number greater than
0. Instead of (4. 16) we have

C, f [Ma.s)
Z 0 -'.r+ (4. 19)

0

and instead of (4. 17)

F (t) =)fF(r ,)~/'~ f '-' ) COSA (NJ , U) di1 (4.20)

It can be shown that F(t) decreases as t increases for t ?' 0 and
decreases as t decreases when t < 0. The test V, (t) I when
F(t) < c is therefore equivalent to V. (t) = 1 when ý t %> c, and
this is the ordinary two-sided Student test, c being given by

Pr t Itl'c I Ho-= o.

Since it is independent of E% this test is U. M. P. for Ho against
the composite alternative H, (namely, > • 0).
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TESTS FOR THE PROPORTION DEFECTIVE

5._1 Simple Hypothesis against Simple Alternative

Let p be the observed proportion of items in a sample of N
which have a certain characteristic. For convenience we shall
refer to this characteristic as that of being "defective" but of
course it may be of quite a different nature. It is merely nec-
essary that an inspector shall be able to say unambiguously of
each item whether or not it possesses the characteristic in ques.
tion (which might for instance be that of being of the male sex if
the sample consists of animals).

i Tr is the true proportion defective in the population (assumed
to be very large) and X is the observed number defective out of a
sample of N (X is a random variable), then

Pr X = x N . (T-) N -x (5.1)

where ( N) =N / [xl (N x)V1
x

Let the null hypothesis H° be that Tr = T0o and the altern-
ative hypothesis H1 that 1T = iT1 . Then in the notation of 1 iw

f =~ r_ X (')
f= (X T) r.(,_

and L(x) = xlog (r'/IrT,) + (V-x)x (I-Io,,)/((- lrl).

The condition for rejection, L(x) < c, is therefore

r71 N [TO6x - "1...0+[, I'- 11 I + [_I- M1 •S• ,- I ---- , (5.2 )

First let us suppose that t1T Tr 1 0 , so that 1 - 1T, < 1 - To
The coefficient of x in (5. 2) is negative, and (5. Z) is equivalent
to x >c (5.3)
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where c is a new constant. The value of c is determined by the
size of the test, i.e. by

( -o (5. 4)

As described in § 1. 8, we can choose a suitable integer c,
and a suitable probability 00 , so that for the test

q, (x) = 1, x >c,

V(X) = 0, x<c,

9(x) == , x C,

(which means that we reject H if x > c, and reject it with prob-
ability '/o, when x = c ) we have

f (c) 9-O + 3 (i) = 0.(5.5)
C+1

The power of the test is

p + ~I ~j(5.6)

For given values of c , iro and N ( 100) we can use the Tables of
the Binomial Probability Distribution (National Bureau of Standards,
1950, and H. G. Romig, 1953) to find P as a function of 7Tr1 , and
hence construct power curves for this test. For large N and 7T0

near 0. 5 the distribution of x under hypothesis H is approximately0
normal with mean N7ro and variance NTro ( i - 1To0 ) . For large N
and Tro near 0 the distribution is approximately of the Poisson type,
with parameter N1ro.

If 7T < 7r , the test (5. 2) is equivalent to x < c, where c is
determined 1by o

C-t

f(c) 414ý + X- <X . (5.7)
0

which is equivalent to

f f (5.8)
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The power is now given by
N

I-P O)- !T (C) 5~(5.9)

Figure 1Z gives the symmetrical power curves with 1T0 = 0. 5
for several values of N, and Figure 13 illustrates the non-symmetric-
al case for To = 0. 2. The data for these curves and for some other

values of ir are included in Table VI.0

It is apparent from Figure 12 that to have at least a 50%

chance of detecting the difference between an actual proportion 0. 7

in the population and an assumed value 0. 5, one would need a sample

of about 16. To raise this chance to 80% one would need a sample

of nearly 40. This is on the assumption that the chance of falsely

stating that such a difference from 0.5 exists is only 0.05.

5.2 Proportion Defective when Distribution is Normal

We suppose that the objects tested have a characteristic X

which is normally distributed with mean /tA and standard deviation
q- , and that if X is greater than some fixed value x0, the object

is classed as defective. We might think of bolts, for instance,

which must be less than a certain diameter to pass through a hole
of fixed size. The proportion iT of defectives in the population

will be the area under a standard normal curve beyond the ordinate

at (x° - L,) / r . If Rand s are the mean and the standard

deviation of X in a sample of N items from the population, an

estimate of N 1 /7 ( x - tL ) / a/' which we will call f , is

provided by the statistic u = n ( xo - 1) / s, n being written

for N - 1. The probability p that a standard normal variate exceeds

N-/A;", i.e. 1 - -•"/•), is then an estimate of iT.

Now un XX , -t

n1/2 - X (5.10)

where z = N/ ( - )/ and ,= N s/ S/
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TABLE VI

Power of Test for Proportion Defective

This gives for assigned i 0 , and OC = 0. 05, the power of the randomized
test for the proportion ir1 of defectives in the population against an
assumed value To0 , for a sample of size N. The test consists in reject-
ing Ho if the observed number x of defectives is greater than c or less
than c' I If x c, H° is rejected with probability %#, and if x z c'
with probability •' 0

(a) IT = 0.2

N 
itc

c , .02 .05 0.1 o'.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 .845
5 .138 .118 .090 .05 .143 .282 .452 .629 .789 .910 .980

0 .153

4 .195
10 .381 .279 . 162 .05 .189 .416 .663 .856 .960 .995 1.000

0 .466

6 .743
15 .764 .504 .244 .05 .241 .544 .810 .950 .993 1.000

1 .112

7 .327
20 .849 .610 .302 .05 .282 .638 .893 .984 .999

1 .667

10 .687
30 .980 .822 .429 .05 .367 .788 .970 .999

3 .074

12 .153
40 .995 .903 .517 .05 .444 .880 .992

4 .454
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(b) io 0 0.3

CI (,g .05 0.1 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9

3 .145
5 .230 .176 .098 .071 .05 .080 .121 .233 .387 .573 .767 .929

0 .298

5 .026
10 .655 .418 . 156 .090 .05 .099 .171 .383 .638 .852 .968 .998

1 .180

7 .000
15 .851 .592 .204 .105 .05 .113 .213 .500 .787 .950 .996 1.000

2 .161

9 .031
20 .937 .715 .248 .118 .05 .125 .250 .593 .875 .983 .999

3 .203

13 .224

30 .990 .868 .329 .143 .05 .147 .316 .733 .958 .998
5 .427

17 .576
40 .999 .948 .412 .168 .05 .169 .381 .832 .987 1.000

7 .832
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(c) wo = 0. 4

c 'P61"

C Y1. .05 0.1 0.2 0.3 0.35 0.4 0.45 0.5 0.6 0.7 0.8 0.9

4 .518
5 .498 .3890 .211 .108 .075 .05 .077 .112 .212 .355 .540 .760

0 .643

7 .888
10 .916 .742 .385 .156 .091 .05 .094 .159 .358 .620 .857 .981

2 .030

9 .264
15 .970 .840 .445 .159 .082 .05 .105 .191 .458 .761 .950 .998

3 .187

12 .816
20 .997 .954 .624 .234 .116 .05 .117 .230 .563 .782 .986 1.000

4 .973

16 .039
30 LO00 .993 .775 .301 .137 .05 .139 .298 .719 .961 .999

8 .128

21 .308
40 .999 .870 .363 .156 .05 .158 .355 .815 .989

11 414
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(d) i 0 i0.5

IT1
N° =C 1  0.1 0.2 0.3 0.4 0.5

0.9 0.8 0.7 0.6

5 4 1 0. 10 .630 .377 .211 .109 .05

10 8 2 0.893 .909 .646 .358 .154 .05

15 11 4 0.778 .978 .794 .467 .189 .05

20 14 6 0.793 .996 .811 .568 .224 .05

30 19 11 0.0124 1.000 .975 .732 .293 .05

40 25 15 0.264 1.000 .993 .828 .350 .05

For values of fr > 0.5, use the above tables with 1- ir0 and
1 lWi instead oA i" and 1r"1 . The values of c and c' will be
N -c' and N,- c of the above tables respectively, and the values
of 9,and ', will be interchanged. Thus for iT"0 = 0. 6 and N = 40,

c= 29 and c' = 19, 9' =0.414and l= 0.308.
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In this expression, z is a standard normal variate and
has the X distribution with n degrees of freedom; u, therefore, has
the non-central t distribution of (4. 9), with f instead of C, . In
equation (4. 9), t was defined as nl/ 2 (z + p, ) / X , but we can
easily see that if the signs of both t and r are changed, f(t) is un-
altered, and we note that the double change brings us to the
definition of (5. 10).

Ife is known, the value of u (say uC) such that Pr t u >
= P is given by

u to (5 11)

where tt depends on n, and P, and can be found from the tables of
non-central t. Hence, if we find u for a sample of N items from the
population, we can fix confidence limits for e by supposing that q is
such that u = u. . We read from the tables the value of • correspond-
ing to the given n, t(=u) and P, and our upper confidence limit for 1T

(supposing that P< 0.5) is 1 - 'P(N 1 " 2 e/2

The lower confidence limit is found similarly by replacing P
by 1 - P. The confidence coefficient corresponding to these limits
is 1 -ZP.

Suppose for example that we want 90% confidence limits for
the proportion of defectives in the population, as determined from a
sample of size 50. We will agree to regard an object as defective if
the value of X for this object exceeds 1. 645. From the sample we
find, say, 7= 0.14, s = 0.90, so thatu = 7(1.505)/ 0.90 = 11.7.

Putting P = 0.05, t = 11.7, n = 49, 1 'q find from the tables of
Johnson and Welch thate = 9. 1Z, so that N p = 1. 29 and the upper
confidence limit for 1T is 0.099. Putting P = 0.95, we get N 1/ 2  =
2. 01, so that the lower confidence limit is. 0ZZ. The estimate ofIr
given by 1 - • (N 1 /?- u) is 0.050.

Instead of being given xo, we may ask what value it should
have in order to correspond to a given value of Tr. By our assumptions,
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so that xo = + OCZ, where Z I is the standard normal variate
exceeded with probability ir, and is equal to An estimate

of x is therefore given by
A - 'L .e/A.

AA
Xo 4- 2L + SNN 7L÷ (5.13)

In the above example, if T = 0.05, z IT = 1.645, and xo = 0. 14 +

0.?efo-)(1.645) = 1.635.

We can again use the non-central t distribution to find confidence
limits for xo .

If u > u o, , n12(xo 0")S,(

so that x 0 >. + S •" ,

If therefore we find to corresponding to the given values of n, p and P
we can put u% = t, and calculate x0 . By taking P = 0.05 and 0. 95
we get upper and lower confidence limits for xo.

Thus, in the same example as before, e = 1. 645 (50)1/2 = 11. 63,
n = 49 and P = 0.05. From the tables we can find t, = 14.60, so
that x. > 0.14 + -0. 90 X 14.60 = 2.02. If P = 0.95, we get t= 9.40,

7
sothatxo > 1. 21.

The 90% confidence limits are therefore 1.21 and Z. 02.
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VI THE F-TEST

6.1 Comparison of Variance for two Normal Populations
I. .

Suppose we wish to compare the variances q-, and 6'.
for two populations, known to be normally distributed. Let the null
hypothesis H be that (, = (PJ and the alternative hypothesis H1 that

T- = '. wlere we may take > A U. The usual test is to compute
the function:

F = (6.1)

which is a ratio of an unbiased estimate of 0 , given by the sample
variance s 4  , to the corresponding estimate of 01'L, N 1 and N2
being the sizes of the two samples.

The distribution of F on the null hypothesis is known. Its
probability density is ', I 1, -

C n ?L. a F a 6 212-= ) " j.g (6.2 )

where n1 = N 1 - andn 2 = N2 - 1.

The hypothesis H. is rejected if F 7' F, , where
0O

ff(.F) dF= o (6.3)
Fa'

The probability of rejecting H. when it is really true is then equal
to o0 .

The power of the test is given by

P=PrIF >F., IHF (6.4)

Now, on the hypothesis H1 ., the ratio _

has the F distribution, so that if F is the value of F which there
is a probability P of exceeding,

Pr F > F,, 7p
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i.e. Pr F > Fr / J -P (6.5)

Comparing (6. 4) and (6. 5) we see that

F,=•,.F,,/c-, = ?t F, (6.6)

We can use the tables of the F distribution calculated by Merrington
and Thompson (1943) which are available in abridged form in Hald's
Statistical Tables and Formulas, 1952, in order to calculate )L
Thus, ifN =N = 10, 01 andP = 0.5, wefindF. =3.18,
F = 1.00,1 so tiat I = (3. 18) = 1.78.

P

This means that we stand an even chance of recognizing a
difference between G3, and TL when the actual ratio is 1. 78, provided
we agree to accept a 5% chance of wrongly rejecting the null hypothesis
when actually Cr, = 0"L. Only for a few values of P can Fp be
obtained directly from the tables. When N and N are reasonably
large (say 30 or more) an approximation devised by A. H. Carter
(1947) may be used to obtain F for other values. This approximation

is actually for Fisher's Z , which is more nearly normal than F,
but since z = 1/2 log, F, F is readily obtained from a table of
natural logarithms. The approximation consists in finding %" , the
normal variate corresponding to P, and calculating

S--(6.7)'--3

wheres= l+1 , h2=, k= r'2.- )/6

For n1 = n = 19, and P 0. 25, we have '• = 0. 6745, k -- 0.4242,
h = 19, and therefore z •0. 1530. This is equivalent to F = 1. 3580,
whereas the correct value is 1. 369. In Table VII the entries for P =
0.4 and 0.6 have been calculated by means of this approximation,
and checked by a set of curves drawn by Ferris, Grubbs and Weaver
(1946).

Table VII gives values of X for different sized samples
(the two samples are supposed equal in size, so that N 1 = N2 = N),
and for certain values of P. This table can be used to decide roughly
what size of samples would be necessary in order to detect a given
difference of the value of . from unity.
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TABLE VII

Values of the Standard Deviation Ratio X = 1 / Gc,2 , detectable

with power P, the samples being both of size N.

N 0.1 0.25 0. 4 0.5 0.6 0.75 0.9 0.95

5 1.25 1.76 2.24 2.53 2.86 3.63 5.12 6.39

10 1.14 1.41 1.64 1.78 1.94 2.25 2.78 3.18

15 1.11 1.31 1.47 1.58 1.68 1 ,89 2.24 2.48

20 1.09 1.26 1.39 1.47 1.56 1.72 1.99 2.17

25 1.08 1.22 1.34 1.41 1.48 1.62 1.84 1.98

30 1.07 1.20 1.30 1.36 1.43 1.55 1.74 1.86

61 1.05 1.13 1.20 1.24 1.28 1.35 1.46 1.53

101 1.04 1.10 1.15 1.18 1.21 1.26 1.34 1.39

The probability of error of the first kind is 0.05;

that of error of the second kind is I - P.
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Thus, suppose that a suggested new proces of manufacture
is expected to be able to reduce the dispersion in some quantity meas-
ured (e. g. tensile strength) for certain types of casting. If the new
process can reduce dispersion in the ratio 3 : 2, it will be worth while
changing. In order to have a 75% chance of detecting such a difference,
if it exists, we need samples of about 35. In order to have a 95%
chance, we should need samples of about 70.

6.2z The Analysis of Variance Test

The standard analysis of variance test is an F test of the
hypothesis that there is no significant difference between the "treatments"
being compared. The test is based on a comparison of two independent
estimates of variance, one calculated from the treatment effects and
one from the "error".

To take a simple case, suppose we have b treatments, each
replicated r times. If X is the variable measured, and if x.. is the
observed value for the ith treatment and the jth replicate, tie total sum

of squares is

0= .(x. .x)2 =qI + qz

where q= r (X' -1). andq = xi

Here 7-= x the mean value for the xth treatment, and ; is the

r
overall mean. The quantities q, and q2 are called the sum of squares
between treatments and the sum of squares within treatments respectively.
The latter depends only on the minor variations between replicates
undergoing the same treatment, and the corresponding mean square
q•j(r - 1)b is the error estimate of variance. The former depends
on the average treatment effects, and the mean square q /(b - 1) is
the estimate of variance based on treatment differences.

On the null hypothesis, ql . b(r - 1) = F has the
b - 1 q2

F distribution with nI and n2 degrees of freedom, where n = b - 1 and
n2 = b(r - 1). Since
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F~ ~ Y= L____•lF +, "IL I", .t -

This quantity, denoted by Ez, has been used in the tables
prepared by P. C. Tang (1938) for the power function of the analysis
of variance test.

On the alternative hypothesis that the true effect of the ith

treatment is o ý (where we may suppose the origin so selected that
t ," 0), the variance of treatment effects is

Ca 1 i A (6.8)
b

J.

If the true variance of the population sampled is (6 (irrespective
of the magnitude of the treatment effects), the variance of a treatment
mean is c". = cTa"r. The ratio

S= m / G-,4 (6.9)

is used in Tang's tables as an argulment. When g = 0 the quantity
q / a- has the ordinary -X a distribution with nI degrees of freedom.
Wen 9 4 0, it has a non-central %adistribution, the probability density
being

CL K~ (6. 10/ý

where %'is written for ql/r , and)for b P, and where K(x)is
an infinite series:

Cob
K(x) = :ý xm

-m Cm + (b 1)+ JA.6.

When 4 = 0, K ),X/&/4) in (6. 10) reduces to K(O) = and

(6. 10) is then the ordinary density function with b - I degrees of
freedom.
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The density function for E 2 , which is obtainable from the
non-central Y density for q,/IT and the central • density for
q2/ q 3, is given by

V- -' ' I ~ , . . y L

f (Ez: .e H• /) -(6. 12)

where

H(x) 1 + + ( ), % ).! (6.13)

and where n = b -, n br b, n + n =br 1. The function
H(x) is called a conflue1t hypergeometrii function. When ; = 0,
that is when 0, we have H(-L > E 2 ) = 1, and E 2 is a Beta-variate.
The probability of error of the first kind, if the null hypothesis is
rejected when EZ > E2 , is given by

f= f(E 2 I • =0) dEZ (6. 14)

FM 2
For a given Oe, EOC is found from the tables of the Incomplete Beta
Function. The power of the test is given byi

Pz a I L (E2) dEz (6. 15)

and can be calculated numerically, f(E 2 ) being now given by (6. 12),
with ?. * 0. Tang's tables give, for different numbers of degrees
of freedom, the corresponding values of E2 for qC = 0.05 and 0.01,
and also the power P for selected values of . Emma Lehmer (1944)
has published inverse tables which for selected values of P give the
corresponding values ofP , both for N' = 0.05 and for Of = 0.01.

In the special case when b = 2 (and therefore n = 1), there
is only one set of o ( which will yield a given 0 and at d&e same time
satisfy the relationo(ý= 0. If the true treatment means for the first
and second treatments are UO = /A + ofI , and /Ac,= At + XA. , we
clearlyhave - = = 1/2 (fA,-l, ), so thatcA = 1 2 and

1 M1  ýC -' /8 4
avr . The degrees of freedom nI and n2 are 1 and 2(r - 1)

respectively.
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The quantity f of Neyman and Tokarska's tables (see • 4. 5) is here

e = -- (-) IA, wince N = N = r, so that TZ Pi. How-
ever, Tang's tables are for the Iwo-tilled test and Neyman and

Tokarska's for the one-tailed test, so that Tang's (or Lehmer's)
level C1 = 0.05 corresponds to Neyman's level ot = 0. 025.

6.3 An Example

This example is given by Tang. Suppose we have four
treatments, each with five replications, in a randomized block
experiment. Then nI = 3 and n = 16 - 4 = 12 (four degrees of free-
dom are allowed between blocký. Let the treatment differences
(expressed as percentages of the mean yield) be -5, -4, 3, 6, and
let the standard deviatidn (estimated from pastexperience) be 10%
of the mean. Then

5 . 86 = 1.075, so that = 1.04.

Tang's tables for the 5% significance level show that when 0 = 1,
P = 0. 269 and when 9 = 1.5, P = 0.556. This suggests that P is
about 0.3, so that if the true treatment differences were as indicated
above, the chance of detecting them at the 5% level would be only
about 3 out of 10.

A similar result holds for a Latin square experiment. In
a square of size n x n, the degrees of freedom are nI = n - 1,
n2 = (n - 1)(n - 2).

6.4 The F-test, on the Assumption that the Treatment Effects
are not Constant but are Normally Distributed

We can in some cases suppose that the b lot means represent
a sample from a normally distributed super-population of means with
a standard deviation e (r , & being a pure number. The sampling
variance for a single lot mean of size r is dir, so that the total
variance among the means is
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a r+02r ' 0/ , (6. 16)
2.

where ), = 1 + r 0 2. The null hypothesis H° is that 0 = 0, and the
alternative hypothesis H is that e > 0.

On hypothesis H , b(r - 1) q, has the F distribution

(b- 1)qZ

with b - 1 and b(r - 1 degrees of freedom. On HI, the quantity
b(r -1)q 1

S- 

1has the F distribution w ith the sam e degrees of freedom .

X'b- l)q 2

The hypothesis H° will be rejected when F "> Fx , F here
standing for C b(r - l)q /[ (b - l)q 2 3 . I HH1 is true, F -> Fv
implies that F/7' , / •' , and the probability of this is the power
of the test. Therefore, since F/•t has the F distribution,

cc

P f Jf(F)dF (6. 17)

and this can be found from tables of the F function.

Table VIII has been calculated from Merrington & Thompson's
tables (1943) of the F distribution. It gives for C = . 05 and P =0. 5,
the value of I corresponding to selected values of b and r. That is to
say, it gives the standard deviation of lot means, as a fraction of the
standard deviation of the population, which has an even chance of
being detected at the 5% significance level, as a result of an analysis
of variance based on b lots with r replicates in each lot. Thus, with
3 lots, one would need at least 5 items in each sample in order to
stand an even chance of finding a significant component of variance
between lot means, if actually this component were as large as the
population variance (0 = 1).
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TABLE VIII

Ratio of Standard Deviation of Lot Means to Standard Deviation of
Population, detectable with Power 0. 5 at Significance Level 0. 05,
for b Treatments (or Lots) with r Replicates.

r 2 3 4 5 6 7 8 9 10

2 3.66 2.22 1.73 1.48 1.32 1.21 1.13 1.06 1.01

3 2.09 1.37 1.11 0.98 0.89 0.83 0.78 0.74 0.71

4 1.63 1.08 0.89 0.79 0.72 0.65 0.63 0.60 0.58

5 1.39 0.93 0.77 0.65 0.62 0.58 0,55 0.52 0.50

6 1.23 0.82 0.68 o.61 0.55 0.52 0.49 0.47 0.45

7 1.12 0.75 0.62 0.55 0.51 0.47 0.45 0.43 0.41

8 1.04 0.69 0.58 0.51 0.47 0.44 0.41 0.40 0.38

9 0.97 0.65 0.54 0.48 0.44 0.41 0.39 0.37 0.36

10 0.91 0.61 0.51 0.45 0.41 0.39 0.37 0.35 0.34

11 0.86 0.58 0.48 0.43 0.39 0.37 0.35 0.33 0.32

12 0.82 0.55 0.46 0.41 0.37 0.35 0.33 0.32 0.30

16 0.70 0.47 0.39 0.35 0.32 0.30 0.28 0.27 0.26

21 0.61 0.41 0.34 0.30 0.28 0.26 0.25 0.24 0.23

25 0.56 0.37 0.31 0.28 0.25 0.24 0.22 0.21 0.21

31 0.50 0.33 0.28 0.25 0.23 0.21 0.20 0.19 0.19

61 0.35 0.24 0.20 0.17 0.16 0.15 0.14 0.14 0.13

WADC TR 54-9 '77



VII. DISTRIBUTION-FREE TESTS

7.1 Van der Waerden's Test for the Difference of Means of two
Samples

The chief objection to Student's test for the difference of
means is the necessity for assuming normality in the distributions.
Various tests have been derived which do not require this assumpt-
ion, but such tests Pre usually considerably less powerful than
Student's test, particularly when the samples are fairly large.
Van der Waerden (1935) has described a test which does not require
the assumption of normality but which, if the distributions are
normal, is asymptotically as powerful as Student's test.

Suppose there are m observations xl, x 2 , ... , x and n
observations y 1 y2  y Let the means of these two samples
be x andy respectively and "let D = --1 The null hypothesis to
be tested is that D = 0 and the alternative hypothesis is that D ) 0.

The method consists in placing all the observations in
order of increasing size (the x's and y's mixed up together),
labelling them z1 , z ... z (N = m + n), and associating with each

4k (k = i, 2, ... , N9 a standardized normal variate 4 , defined
by • (IA) = k/(N + 1). This means that the To are normal
deviates corresponding to values of the cumulative distribution
function which are evenly spaced between 0 and 1. Thus if m = n = 5,
there are 10 values of 4 , given by (?,) =1/11, 2(/1) = 2/11...,
S(j', =10/11. If we denote the inverse function by l , we can
write

•& = '[k/(N + 1)] (7.1)

where e (7.2)

We now pick out and total those values of •,t which are
associated with the x's, and which we may denote by i , , "%.,

. If the x's on the whole are larger than the y's, the total I
will be greater than zero. If this total exceeds a certain critical
value, depending on m and n, the difference D between T andy may
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be regarded as significantly different from zero. A table of critical
values corresponding to the 5% significance level is given in Table

Ix.

Thus, suppose the following sample values are recorded:

xI 26 29 28 24 22

y 23 25 21 18 20 27

Here m = 5, n = 6, D = x - y = 3.47. The values are placed in order

in the following table, with the x's ringed. The x. are obtained
conveniently from Kelley's Statistical Tables (1918).

1z18 20 21 Q 23 a 2.5 27 -.b7-7
k 1 2 3 4 5 6 7 8 9 10 11

A1(A) -0. 4307 0 0.4307 0. 9674 1. 3830

The sum of the Kis 2. 3504, and the 5% critical value is 2. 28. The
difference between " and f is therefore significant at the 5% level.

This test depends only on the order of the observed values.
There are actually 462 ways in which 5 x's and 6 y's can be permuted,
counting as different only those ways in which the x's occupy
different relative positions in the sequence. Of these ways, exactly
23 have . >.2.317 and 24 have •' • 2.278. If all arrangements
are equally probable, the chance of wrongly rejecting the null hypo-
thesis is 23/462, which is very close to 0. 05.

7.2 Calculation of Critical Values

For large values of N, the distribution of • 3 approximates
to normal with a mean of zero. The true variance is m n Q/t - 1),
where

S, (7.3)
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TABLE IX

Critical Values of . for Van der Waerden's Test ( = 0.05)

jma
Nz2 3 4 5 6 7 8 9 10 15 20

1.47 1.56

7 1.56 1.70

8 1.63 1.82 1.66

9 1.68 1.91 2.01

10 1.73 1.98 2.12 2.16

11 1.77 2.04 2.21 2.28

12 1.81 2.10 2.29 2.40 2.43

13 1.83 2.14 2.34 2.47 2.53

14 1.86 Z. 18 2.40 2.54 2.63 2.66

15 1.86 2.21 2.45 2.61 2.71 2.76

20 1.97 2.34 2.62 2.84 3.00 3.13 3.21 3.26 3.28

2s 2.02 2.42 2.73 2.98 3.18 3.35 3.48 3.58 3.65

30 2.06 Z.46 2.81 3.08 3.31 3;50 •.66 3.79 3.90 4.13

35 2.09 2.52 2.87 3.15 3.40 3.60 3.78 3.94 4.07 4.46

40 2.11 2.56 2.91 3.21 3.46 3.69 3.88 4.05 4.20 4.70 4.85

The size of the x sample is m and that of the y sample n (N m + n).
The x sample is that with the greater mean. If m > n, read the

above table for n instead of m.
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For small values of N this can easily be evaluated and for large N
the approximation

Q'z I - (2 n N)/N + (4 N)/N (7.4)

(where In is the Napierian logarithm) is remarkably good, as
indicated in the following brief table:

N Q(exact) Q(approx.)

5 0.4486 0.4513

10 0.6216 0.6229

15 0.7045 0.7053

20 0.7546 0.7553

For the normal approximation, the critical value of X Y'is taken as
A]•~ O (l-C m n Q/ (N - 1)J where cv. is the probability of

error of the first kind. In Table IX, at = 0.05 and lk (I - 0 ) = 1.6449.

The critical values in this table are calculated for the normal approx-
imation.

For small values of N, the probability of error of the first

kind, with these critical values, will not be exactly 0. 05. However,
the following table indicates that the differences from 0. 05 are not
serious as long as neither m nor n is very small.
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TABLE X

Probabilities of Error of the First Kind in using the Critical Values of
Table IX.

NX 2 3 4 5

6 .067 .050

7 .048 .057

8 .071 .054 .057

9 .055 .048 .048

10 .044 .050 .052 .048

11 .055 .055 .051 .050

7.3 The Power of the Van der Waerden Test

Since the test depends only on the order of the observations,
the actual distribution function for the x's or the y's is irrelevant. If
we suppose that the x's are normally distributed with mean a and
variance I and the y's are also normally distributed with mean 0 and
variance 1, then it can be shown that Z Y has asymptotically (for
fixed m and for N-> oO I2e same distribution as"XI, and its
standard deviation is mrn .

Asymptotically, Student's test consists in rejecting the
null hypothesis (namely, that a = 0) when mI/Z2 > •(1 - x );i.e.
when

Sxi > mn/Z k (I - • ). The Van der Waerden test

2.

rejects Howhen•[ > 6"•(t.a4) where C = m (N - m) Q/(N - 1),

and since the distribution of 15C approaches that of 2 xi and O
approaches m as N-1 oO, the two tests are evidently asymptotically
equivalent.

WADC TR 54-9 82



7.4 Treatment of Ties

It may happen in practice that there are some ties in the
ranking, because, even though the variates are continuous, the
measurements are rounded off. These ties may be treated in different
ways:

(i) if q values of zk (k = 1, 2, ... , N) are equal to zj and p of
them are less than z , we assign at random the ranks p + 1,
p + 2, ... , p + q to ghe q equal values, and therefore the

corresponding ; *are taken as ;p+l' G'' I p+q;

(2) we assign the ranks among the tied variates in all possible
ways. If there are s of these ways and for r of them the value of

SA~Tjbelongs to the critical region, we reject H with
probability r/s; o

(3) each set of q tied values may be alloted a 3 which is the
arithmetic mean of the p + I, .."' .P; . This
necessitates a reduction in the sum of squapresf the T.
used in calculating Q, so that the critical value needs some
adjustment. If, for example, the items ranked 8 and 9
are judged equal in a total of 11, they may be given the
value 1/2(0.431 + 0. 674) = 0. 553. The reduction in the
sum of squares is 1/2(0. 674 - 0.431)2 = 0.0297.

7.5 Terry's Test

M. E. Terry (1952) suggested independently a test which
is very similar to Van der Waerden's. As applied to the two-sample
problem, the null hypothesis H0 is that the two samples (of m and n
observations) come from the same continuous population, and the
test is most powerful against the alternative hypothesis H that they

come from two normal populations with means and ýIt. and
common variance <r 2, the ratio (,AI - .Aj )/ a- teing sufficiently small.

The test consists in computing a statistic c, which is
the sum of the expected values of those m items (in a sample of m + n
drawn from a standard normal population) which have ranks the same
as thoseof the x. in the observed combined sample, when the x's and

1
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y's are placed in order. Thus, in the illustration used in § 7. 1,
the x's occupy ranks 4, 6, 8, 10 and 11. From Table XX of Fisher
and Yates's Statistical Tables, the expected values for these ranks
in a sample of I I from a standard normal population would be -0. 46,
0, 0.46, 1. 06, and 1.59 respectively, and the statistic c is therefore
2.65. A 5% critical value for c is determined by computing c for the
23 or 24 permutations out of 462 which give the largest values. It
is found that 23 permutations have c ! 2. 54 and 24 have c ,, 2.47.
The 5%0 critical value is therefore about 2. 54, and accordingly the
difference between the samples is significant at the 5% level.

Terry has shown that his statistic c has on the null
hypothesis a variance V(c) = g2r') u7 /Z , N = m + n, where pýt•

is the expected value of the item of rank i in a sample of N drawn
from a standard normal population. Values of!,ALFare given in
Fisher and Yates's Table XXI. He has also shown that if 0 <n/N - 1
as N -*4o, then the distribution of c approaches normal with mean
0 and variance V(c).

The distribution of c(N - 2)/ V(c) (N - 1) - c2 3 is
approximately that of Student's t, with N - 2 degrees of freedom.
Thus, for the case given above, with m = 5, n = 6, and N = 11, the
value of t L05 for 9 d.f. is 1.833 (the one-tailed test), and X
8.8892. The-critical value of cl, determined by

a. Zt

C (N -. 2.+ 4' It Or V (7.5)
0 Or N

is 2.57, which agrees very well with the correct value 2. 54.
The power of this test has not been determined analytically, but
experimental results on random numbers indicate that the power
is not far below that of Student's t, even for N as small as 8, when

(Q', -/)V2- ) /0T is less than 0.5 or greater than 2.5. For inter-
mediate values there is a marked reduction in power.

Ties are treated as in Van der Waerden's test.

7.6 The Mann and Whitney ( or Wilcoxon) Test

This is a rank order test of the hypothesis H that two
sets of sample values xI, *.., x xand y 1 , ".." Yn come from the
same population, against the alternative hypothesis H1 that the x's
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are stochastically larger than the y's. If the random variables X and Y
have continuous cumulative distribution functions F(x) and G(y), X is
stochastically larger than Y when for every a, F(a) < G(a), i. e. the
probability that X < a is smaller than the probability that Y - a.

A statistic T to test this was first proposed by Wilcoxon
(1945). If the x's and y's are arranged in increasing order, T is the
sum of the ranks of the x's in this sequence. For the data given in

§ 7. 1, these ranks are 4, 6, 8, 10, 11, so that T = 39. An equivalent
statistic U was tabulated by Mann and Whitney (1947) and is the number
of inversions, that is, the number of times an x precedes a y. In
the example, U = 3 + 2 + I = 6, since the value x= 22 precedes the
three values y = 23, 25 and 27, x = 24 precedes y = 25 and 27, and so
on. In general

U = nn + m(m + 1)/Z- T. (7.6)

If, under the null hypothesis, Pr (U < U) = N' , the test which consists
in rejecting Ho when U < U has a size ot .

The expectation of U on the null hypothesis is nm/2 and
its variance is nm(n + m + 1)/12. The limiting distribution of U is
normal as both m and n tend to oo , and for m = n = 8 the distribution
of U - 1/2 n mis very close to normal. Mann and Whitney have calc-
ulated tables, for m and n not greater than 8, giving the probabilities
of obtaining different possible values of U. Thus, for m = 5 and n = 6
(m and n can be interchanged in the tables) we find that Pr(U N 5) is
0.041 &knd Pr(U < 6) is 0.063. If we reject H0 when U , 6 (and
therefore will do so in the example given in ý 7. 1) the probability of
error of the first kind is 0. 063. If we want to keep this error below
0.05 we shall have to take U = 5, and the hypothesis H will, in this
particular example, not be rejected. Alternatively, we could reject
it with probability 0.41 (since 0. 041 + 0.41 (0.063 - 0. 041) = 0.05),
using a table of random numbers.

The maximum values of U such that the size of the test
is not greater than 0.05 are given in Table XI. For larger m and n
the normal approximation may be used
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U = I/2(nm- 1)- 1.645 (7.[)
11 12

(The term -1/2 arises because of the discontinuity of U).

For n a m = 8, this give U = 15.8. The actual probability is 0. 052 for
a value less than or equal to 16 and 0. 041 for a value less than or
equal to 15.

TABLE XI

Critical Values U for Q( - 0.05, for given sample sizes m
and n (m < n), in the Mann and Whitney Test.

n• 2 3 4 5 6 7 8

3 0 0

4 0 0 1

5 0 1 2 4

6 0 2 3 5 7

7 0 2 4 6 8 11

8 1 3 5 8 10 13 15

The Mann and Whitney test is less powerful than the
Van der Waerden or the Terry test. The test is consistent, in the
same sense that as m and n tend to infinity the probability of re-
jection of the null hypothesis, when the alternative hypothesis is true,
tends to 1.
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7.7 The Sign Test

This is an approximate test of the difference between two
sets of paired observations. The usual test, assuming normality of
the distributions, is the Student t-test for the mean of the differences
between pairs, the null hypothesis being that this mean is zero. The
sign test takes account merely of the signs of these differences. The
twoý observations belonging to one pair are assumed made under
conditions as alike as possible, but conditions may vary widely from
one pair to another, and this circumstance may invalidate the Student
t-test.

It is assumed that the + and - signs of the paireddifferences
have, on the null hypothesis, a binomisl distribution. Zero differences
are ignored. If there are N non-zero differences, with x of these
positive and N - x negative, the hypothesis H is that in independent
sampling x is distributed according to the terms of the binomial
(1/2 + 1/2)N. The alternative hypothesis H is that the distribution of
x is according to (q + p)N, where p * I/2. 1 If r is the smaller of x
and N - x the test consists in rejecting H when r •< r. , r., being
a number which depends on N and on the assumed significance level of

A table of critical values for the application of the test
was compiled by Dixon and Mood (1946) and is reproduced in Dixon
and Massey's "Introduction to Statistical Analysis" (McGraw Hill, 1951).
A discussion of the power of the sign test was given by W. M. Stewart
(1941).

The following questions arise: (a) what is the minimum
value of N that must be used if we want a given power for testing H0
against some assumed alternative H ? (b) what is the maximum
value that r may have for a given N 4 Ho is to be rejected at signif-
icance level ot ? Table XII is extracted from Stewart's paper. It
shows, for example, that in order to have at least an even chance of
detecting, at the 5% significance level, the difference between p =
0.70 and p = 0. 50, one would need at least 25 pairs, and the lesser

number of like signs must not be more than 7. Suppose, for example,
machined parts of a specified diameter are tested by a "go" and "no-go"
gauge, and on the average 50% will "go". A new machine produces
parts of which 70% go. To have an even chance of finding a signif-
icant difference at the 5% level, one would need a sample of at least
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Z5, and, to be significant, 18 or more should "go".

TABLE XII

Minimum N and Maximum r for testing with Power P the Hypothesis
that the Proportion of Signs in Paired Differences is 0. 5, the True
Value of p being as given.

S0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

.30 56, 29 25, 7 18, 4 9, 1 11, 1 7, 0

.50 101, 40 44, 15 25, 7 18, 4 13, 2 10, 1 6, 0

.70 1S$, 66 67,2 5 40, 13 25, 7 18, 4 12, 2 10, 1 6, 0

.95 327,145 143, 59 79, 30 49, 17 35, 11 23, 6 17, 4 12, 2

In each pair N is the first number and r the second.
Forp < 0. 50 use I -p. Ifxis the number of+ signs andN -xthe
number of - signs, r is the smaller of x and N - x..
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